YDOOK :Pytorch 生成 全0 tensor数组 pytorch生成定义全零张量数组

博客介绍了使用Pytorch生成全零张量数组的方法,通过torch.zero(shape)实现,并展示了相关源码及输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YDOOK :Pytorch 生成 全0 tensor数组 pytorch生成定义全零张量数组

使用 :torch.zero(shape)

源码展示:

import torch

a1 = torch.zeros(0)
a2 = torch.zeros(1)
a3 = torch.zeros(1, 1)
a4 = torch.zeros(2, 3)
a5 = torch.zeros(2, 3, 5)

print('a1 = ', a1)
print('a2 = ', a2)
print('a3 = ', a3)
print('a4 = ', a4)
print('a5 = ', a5)

# JY Lin YDOOK
# Print the size of tensor valuables
print()
print('a1.size() = ', a1.size())
print('a2.size() = ', a2.size())
print('a3.size() = ', a3.size())
print('a4.size() = ', a4.size())
print('a5.size() = ', a5.size())



输出:

D:\Anaconda\python.exe F:/AI/Pytorch/AI2/A2.py
a1 =  tensor([])
a2 =  tensor([0.])
a3 =  tensor([[0.]])
a4 =  tensor([[0., 0., 0.],
        [0., 0., 0.]])
a5 =  tensor([[[0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0.]]])

a1.size() =  torch.Size([0])
a2.size() =  torch.Size([1])
a3.size() =  torch.Size([1, 1])
a4.size() =  torch.Size([2, 3])
a5.size() =  torch.Size([2, 3, 5])

Process finished with exit code 0




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值