小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
答案直接通过浏览器提交。
注意:只提交一个表示最终统计种类数的数字,不要提交解答过程或其它多余的内容。
答案:142
简单暴力的程序。。。。
#include<stdio.h>
int main(){
int a,b,c,d,e;
int s1,s2,s3,s4;
int count=0;
for(int i=1;i<10;i++){
a = i;
for(int j=1;j<10;j++){
b = j;
if(a==b)continue;
else{
for(int k=1;k<10;k++){
c = k;
if(c==a||c==b)continue;
else{
for(int l=1;l<10;l++){
d = l;
if(d==a||d==b||d==c)continue;
else{
for(int m=1;m<10;m++){
e = m;
if(e==a||e==b||e==c||e==d)continue;
else{
s1 = a*10+b;
s2 = c*100+d*10+e;
s3 = a*100+d*10+b;
s4 = c*10+e;
if(s1*s2==s3*s4){
count++;
}
}
}
}
}
}
}
}
}
}
printf("%d\n",count);
return 0;
}