使用slowfast遇到的问题1

问题:

运行python tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50.yaml 提示下面错误?Traceback (most recent call last):File "/home/modelData/action/slowfast/tools/run_net.py", line 5, in from slowfast.config.defaults import assert_and_infer_cfg  ModuleNotFoundError: No module named 'slowfast ?

解决方法:

在运行终端输入

export PYTHONPATH=/path/to/SlowFast/slowfast:$PYTHONPATH

### 安装和运行 SlowFast 的方法 #### 环境准备 为了在 Windows 上成功安装并运行 SlowFast,需要先配置好 Python 和必要的依赖环境。以下是具体的操作说明: 1. **Python 版本确认** 需要确保已安装支持的 Python 版本(通常为 3.7 或更高版本)。可以通过命令 `python --version` 来验证当前系统的 Python 版本[^5]。 2. **Git 工具安装** 使用 Git 下载 SlowFast 源码库到本地机器上。如果尚未安装 Git,请访问官方页面下载适合 Windows 平台的版本[^6]。 3. **克隆仓库** 执行以下命令来获取 SlowFast 库: ```bash git clone https://github.com/facebookresearch/SlowFast.git cd SlowFast ``` 4. **创建虚拟环境** 推荐使用 Conda 创建独立的虚拟环境以管理项目所需的包集合。 ```bash conda create -n slowfast python=3.7 conda activate slowfast ``` 5. **安装依赖项** 进入项目的根目录后,按照 README 文件中的指导完成依赖项的安装过程。一般情况下会有一个 requirements.txt 文件列出所需的所有第三方模块名及其最低兼容版本号列表。 ```bash pip install -r requirements.txt ``` 6. **编译 C++ 组件** 如果存在任何需通过 CMake 编写的扩展组件,则可能还需要额外步骤来进行构建操作。这一步骤取决于具体的实现细节以及目标平台差异等因素影响下的实际需求情况而定[^7]。 #### 测试运行 当上述准备工作完成后即可尝试启动示例程序测试整个流程是否正常工作: ```bash python demo/run_demo.py \ --cfg configs/Kinetics/c2/SLOWFAST_8x8_R50.yaml \ DATA.PATH_TO_DATA_DIR path/to/data_dir \ DEMO.INPUT_VIDEO path/to/input_video.mp4 \ OUTPUT_DIR path/to/output_dir/ ``` 此脚本将加载预训练模型并对指定视频文件进行预测处理,最后保存结果至设定好的输出路径下[^8]。 --- ### 注意事项 由于部分核心功能可能是基于 Linux 设计开发出来的,在移植过程中可能会遇到一些特定于操作系统层面的问题比如路径分隔符不同或者某些 shell 脚本无法直接被执行等情况发生时可以考虑借助 WSL(Windows Subsystem For Linux) 提供更接近原生体验的方式解决此类难题[^9]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值