- 博客(25)
- 收藏
- 关注
原创 机器学习之模型评估
目录准确率 Accuracy:精确率 Precision ,召回率 recall综合评价一个排序模型的性能?Precision-Recall 曲线F1 scoreROC曲线(重要)绘制ROC曲线AUC面积与PR曲线对比评价回归模型指标 RMSE 平均根误差2. 余弦相似度, 余弦距离, 欧氏距离异同:余弦距离是不是严格定义的距离?3. 模型评估的方法HoldOut检验交叉验证自助法4. 超参数调优网格搜索随机搜索贝叶斯优化准确率 Accuracy:tp+fntp+tn+fp+fn\frac {tp+f
2020-12-20 19:47:41 420
原创 剑指offer 14 19 题解
目录[剑指 Offer 14- I. 剪绳子](https://leetcode-cn.com/problems/jian-sheng-zi-lcof/)动态规划解法数学解析:[剑指 Offer 19. 正则表达式匹配](https://leetcode-cn.com/problems/zheng-ze-biao-da-shi-pi-pei-lcof/)剑指 Offer 14- I. 剪绳子动态规划解法状态: dp[n] = n米的最大乘积递推: dp[i] = max([max(dp[k], k)
2020-12-18 00:21:34 304
原创 剑指 Offer #35 #52 链表,双指针,遍历
这目录[剑指 Offer 52. 两个链表的第一个公共节点](https://leetcode-cn.com/problems/liang-ge-lian-biao-de-di-yi-ge-gong-gong-jie-dian-lcof/)题目描述题解[剑指 Offer 35. 复杂链表的复制](https://leetcode-cn.com/problems/fu-za-lian-biao-de-fu-zhi-lcof/)题目描述题解剑指 Offer 52. 两个链表的第一个公共节点题目描述输入两个
2020-12-14 16:57:16 314
原创 剑指 Offer 26. 树的子结构 题解
目录题目描述代码和解释剑指 Offer 26. 树的子结构题目描述输入两棵二叉树A和B,判断B是不是A的子结构。(约定空树不是任意一个树的子结构)B是A的子结构, 即 A中有出现和B相同的结构和节点值。代码和解释# Definition for a binary tree node.# class TreeNode:# def __init__(self, x):# self.val = x# self.left = None#
2020-12-14 16:56:16 228 1
原创 Leetcode 刷题笔记之:动态规划一二三
目录背景:[120. 三角形最小路径和](https://leetcode-cn.com/problems/triangle/)[5. 最长回文子串](https://leetcode-cn.com/problems/longest-palindromic-substring/)什么时候用动态规划?四要素常见四种类型题目1. 矩阵类型(10%)[64. 最小路径和](https://leetcode-cn.com/problems/minimum-path-sum/)[62. 不同路径](https://
2020-12-10 20:26:56 305
原创 Leetcode 刷题笔记之:二分查找
目录基础背景[704. 二分查找](https://leetcode-cn.com/problems/binary-search/)什么时候可以采用二分查找?二分查找的三个部分模板一[69. x 的平方根](https://leetcode-cn.com/problems/sqrtx/)[374. 猜数字大小](https://leetcode-cn.com/problems/guess-number-higher-or-lower/)[33. 搜索旋转排序数组](https://leetcode-cn.c
2020-12-03 20:29:35 968
原创 Leetcode刷题笔记之:栈
这里写目录标题[155. 最小栈](https://leetcode-cn.com/problems/min-stack/)[150. 逆波兰表达式求值](https://leetcode-cn.com/problems/evaluate-reverse-polish-notation/)[394. 字符串解码](https://leetcode-cn.com/problems/decode-string/)[133. 克隆图](https://leetcode-cn.com/problems/clone-
2020-11-29 19:07:50 402
原创 Leetcode刷题笔记之:链表(总结)
目录关于链表和数组操作复杂度[21. 合并两个有序链表](https://leetcode-cn.com/problems/merge-two-sorted-lists/)[2. 两数相加](https://leetcode-cn.com/problems/add-two-numbers/)[61. 旋转链表](https://leetcode-cn.com/problems/rotate-list/)关于链表和数组操作复杂度可见,如果经常需要添加或删除结点,链表更好,经常按索引访问元素,数组更好
2020-11-17 23:47:38 201
原创 Leetcode刷题笔记之: 链表(单链表经典题目)
这里写目录标题206. 反转链表迭代算法:递归算法[203. 移除链表元素](https://leetcode-cn.com/problems/remove-linked-list-elements/)[328. 奇偶链表](https://leetcode-cn.com/problems/odd-even-linked-list/)[234. 回文链表](https://leetcode-cn.com/problems/palindrome-linked-list/)总结206. 反转链表迭代算法
2020-11-16 21:58:56 403
原创 Leetcode刷题笔记之: 链表(双指针技巧)
目录链表的双指针技巧双指针总结链表的双指针技巧环形链表 I单链表中的双指针技巧通常是快慢指针。即设置一快一慢的指针。对于此题,判断链表中是否有环。我们设置快慢指针,如果有环,我们发现快指针会首先进入环的循环,然后迟早与慢指针相遇。如果无欢,快指针则会在与慢指针相遇前便到达尾结点。计算复杂度: O(N)空间复杂度: O(1)class Solution: def hasCycle(self, head: ListNode) -> bool: if not hea
2020-11-15 23:40:08 228
原创 逻辑回归的简单推导(以二项逻辑回归为例)
二项逻辑回归模型二分类模型,每个分类由条件概率P(Y|X)表示,Y=1,0, X为实数条件概率分布P(Y=1∣x)=exp(w.x)1+exp(w.x)P(Y=1|x) = \frac {exp(w.x)}{1+exp(w.x)}P(Y=1∣x)=1+exp(w.x)exp(w.x)P(Y=0∣x)=11+exp(w.x)P(Y=0|x) = \frac {1}{1+exp(w.x)}P(Y=0∣x)=1+exp(w.x)1其中 输入x∈Rn+1x \in R^{n+1}x∈Rn+1, 输出$
2020-11-07 15:56:50 1415
原创 Leetcode刷题笔记之: 二叉树
目录1.深度遍历1.1 前序遍历1.2 中序遍历1.3 后序遍历2. 广度遍历3.利用递归解决的问题# Definition for a binary tree node.class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right1.深度遍历三种深度遍历方式的递归与迭代方
2020-10-28 21:42:41 388 2
原创 Transformer的简单总结
1. encoder1.1 词嵌入除了在最底层的编码器的输入来自词嵌入的词向量,其余的解码器的输入则来自下一层解码器的输出。对于每个编码器,接收的是一个向量列表。比如词向量维512维,一句话有30个词,输入便是(30*512)1.2 self-attention 自注意力层每个单词的输入路径不同。512维词向量,10个词,经过三个权重层WQ,WK,WVW_Q,W_K,W_VWQ,WK,WV,每个词分别生成query vector, key vector, value vector, 这三
2020-10-14 16:02:18 655
原创 指针生成网络(PGN)的简单总结
基于RNN的seq2seq:好处: 用于文本生成,可以用于抽象总结。坏处: 不准确的复制事实细节;无法处理OOV;生成文本有重复倾向;长文本下效果效果倾向于language modelPGN分析:通过指针从原文复制单词,有效处理OOV,保留产生新词的能力。通过COVERAGE机制对重复单词给予惩罚。1. seq2seq with attention 过程input x=(x1,x2,...,xTx)input \ x = (x_1,x_2,...,x_{T_x})input
2020-10-14 15:34:42 2289 2
原创 深度学习(一):神经网络, 反向传播, 梯度消失, 梯度爆炸, 激活函数(附numpy代码)
注:本文所提的神经网络在这里特质多层前馈神经网络一个简单的神经网络基础结构包括三个,线性映射,激活层,隐藏层。如图,输入层的输入向量经过一个线性映射,在经过一个激活层,到达了第一个隐藏层,随着网络的加深,重复线性映射,激活层,隐藏层的过程直至到达输出层。流程很简单,但是需要理解几个问题。1. 线性映射是什么?假设如图所示,输入向量为四维向量X=[x1,x2,x3,x4]X=[x_1,x_2,x_3,x_4]X=[x1,x2,x3,x4],则经过图中的权重矩阵W1W_1W1便是一次线性映射
2020-10-03 22:00:17 715 2
原创 从极大似然估计(MLE)角度看损失函数(loss function)
1. MLE的理解对于给定样本X=(x1,x2,...,xn)X =(x_1,x_2,...,x_n)X=(x1,x2,...,xn),我们推定模型参数θ\thetaθ,使得由该模型产生给定样本的概率最大,即似然函数f(X∣θ)f(X|\theta)f(X∣θ)最大。假设每个样本独立,似然函数为:likelihood(θ)=f(X∣θ)=∏i=1nf(xi∣θ)likelihood(\theta)=f(X|\theta) = \prod_{i=1}^{n}f(x_i|\theta)likelih
2020-10-03 12:53:24 4824
原创 条件随机场CRF(一): 条件随机场的三种表示
目录1. 条件随机场简述1.1 条件随机场定义2. 条件随机场的参数化形式(LinearCRF为例)3. 条件随机场简化形式4. 条件随机场的矩阵形式1. 条件随机场简述1.1 条件随机场定义设X,Y为两个随机变量,若由Y构成的无向图(随机变量为结点,变量之间的依赖关系为边)满足全局马尔科夫性(即构成马尔科夫随机场),即P(Yv∣X,Yw:w≠v)=P(Yv,Yw:w∼v)P(Y_v|X,Y_w:w\neq v) = P(Y_v,Y_w : w \sim v )P(Yv∣X,Yw:w=v)
2020-08-28 17:47:53 460 2
原创 隐马尔科夫模型(HMM)理解与总结
目录1. HMM模型概念1.1 HMM定义1.2 HMM实例2 HMM的三个问题:2.1 计算观察序列的概率2.1.1 前向算法2.1.2 后向算法2.1.3 利用前向概率和后向概率计算得到的重要的概率公式2.2 求解HMM参数2.2.1 已知观测序列和隐藏序列——最大似然2.2.2 已知观测序列,隐藏序列未知——鲍姆-韦尔奇算法2.3 解码隐藏序列——维特比算法本文系个人学习总结,为模型基础原理的概念性总结,不涉及数学原理即详细推导,若有详细了解需要,请参照文章末尾参考资料。1. HMM模型概念HM
2020-08-27 16:41:46 1447
原创 word2vec 参数详解
Word2Vec1. 背景知识2. CBOW, Skip-Gram介绍2.1 以单个词语为输入的情况2.2 CBOW2.3 Skip-Gram3. 优化计算效率的两种方法3.1 Hierarchical Softmax3.2 Negative Sampling1. 背景知识在NLP中,我们处理文本的最细粒度的是词语,所以我们需要将词语转换成向量的形式以进行各式各样的计算。最初也是最简单的一种词向量表达方式是 One-hot 编码词语,例如:text: I love youVocab: { I: 0
2020-08-17 12:59:09 2071
原创 一些想法(2020.07.06)
目前为止我已经写了五篇博文,虽说第一篇博文是今年3月16日写的,但由于各方面原因未能坚持下去,真正开始我的CSDN博客之旅还是始于10多天前。为了完成一篇博文,我会连续两三天对着书和老师的课件咬文嚼字,生啃公式和推理过程,到如今短短的4篇博文却好像已经耗费了我一身的心力,我开始思考,究竟怎样快速产出的同时又能保持博文的通俗性和严谨性?这好像是一个难以权衡的问题,本质上其实是我对自己写博客没有一个清晰的定位。如果我的博客只是为了给自己的学习笔记记录,那应该追求简洁,概括,诸如公式的推导,定理的证明是不需
2020-07-05 22:51:33 229 7
原创 COMP9101 学习笔记 贪心算法在图中应用(Greedy Method applied to graphs)(更新完毕)
假设有n个信号塔用于播放海啸警告,坐标为(x,y),半径为r,信号塔发射型号后,辐射区域内的信号塔也会被激活。给其中一些塔配备地震传感器,这些传感器激活塔后,会是的范围内所有塔被激活,所有塔激活便可以播放海啸警告。如何使得地震传感器数量最少?1. 几个概念解决这个问题前回顾几个概念。给定有向图G=(V,E)G = (V,E)G=(V,E), 怎么求 v∈Vv \in Vv∈V的强连通分量C?建立一个新有向图G′=(V,E′)G' = (V, E')G′=(V,E′),V与G相同,E‘ 则是G中
2020-07-03 20:42:53 811 6
原创 COMP9101 学习笔记 霍夫曼编码 The Huffman Code
1. 霍夫曼编码 (The Huffman Code)1.1 怎么定义好的编码?由于计算机处理二进制位序列,人们需要一种编码模式将文本处理成二进制位的长串,以英文为例,26个字母,空格和5种标点符号共32个符号需要编码,以二进制表示则需要5位编码(25=322^5 = 3225=32),比如00000代表字母a,00001代表字母b,11111代表“…”。每个符号的五位都是完全充分的,平均每一个符号需要用到5位编码,ASCII就是利用这种方式的编码模式(当然,不止32位)。数据压缩领域的一个基础问题便
2020-07-01 19:19:15 1572 4
原创 COMP9517 学习笔记 图像处理常用技术介绍 image processing(持续更新中)
本文为个人学习笔记如有疑问欢迎留言或者私信(持续更新中)图像处理简介图像处理的目的:处理失真(suppress distortions)增强相关信息为接下来的图像分析做预处理1. 图像分析的种类及常用技术1.1 空间域操作(spatial domain operations)1.1.1 点操作(对单个像素点的intensity转换)对比度拉伸(Contrast streching)操作:灰度值(grey value)小于L的像素设为黑(即灰度值为0),灰度值大于H的像素设为
2020-06-20 18:24:19 1176 1
原创 COMP9101 从算法角度理解快速傅里叶变换FFT
如无必要,尽量使用通俗的定义原则上只需要理解大白话就可以。1. 卷积的定义,计算,以及问题1.1 卷积定义理解数学定义给定两个向量 a=(a0,a1,...an) a = (a_0,a_1,...a_n)a=(a0,a1,...an) 和b=(b0,b1...bn)b = (b_0,b_1...b_n)b=(b0,b1...bn)他们的卷积 a∗b=(a0b0,a0b1+a1b0,a0b2+a1b1+a2b0,...an−2bn−1+an−1bn−2,an−1bn−1)a*b = (
2020-06-19 17:55:11 294 3
原创 COMP9318 2020T1 Data Warehouse Week2
COMP9318主要涉及的是数据分析机器学习的算法,第二周第三周Wei Wang主要介绍的便是Data Warehouse (数据仓库)。本文是个人学习笔记,框架按照Wei Wang的课程课件和讲述设计,以考试复习为目标导向。如果错误,欢迎大家指正交流Why and What are Data Warehouses?要了解数据仓库,首先我们必须要了解当数据分析中会面对的一些问题数据分析所...
2020-03-06 16:36:19 1742 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人