【环境搭建】MacOS系统M1芯片从零开始安装torch torch-geometric(PyG) torch-sparse torch-scatter步骤详解、配置图神经网络(GNN)训练环境教程

本文详细介绍了在配备M1芯片的MacOS系统上,从零开始安装torch、torch-geometric、torch-scatter和torch-sparse的步骤,包括环境搭建、解决安装问题及配置图神经网络(GNN)训练环境的过程。针对conda安装困难,作者提供了安装Miniconda3、创建新环境和设置MACOSX_DEPLOYMENT_TARGET的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:实际上只装PyTorch或者torch不会遇到什么问题,但是torch-geometric、torch-scatter、torch-sparse在M1 chip的Mac上非常难安装(PyG Documentation>Installation里注明了“Conda packages are currently not available for M1/M2/M3 macs”)。博主试错过程中遇到了很多无解的bug,还把conda搞炸了,最终不得不删了整个conda文件夹,环境清零,差点吐血。好不容易找到办法安装成功,遂写一篇笔记,便于博主自己以后重装,也希望可以让读者少走弯路、轻松安装成功。

涉及:图神经网络、机器学习、深度学习、人工智能领域,torch、torchvision、torchaudio、torch-geometric、torch-scatter、torch-sparse等package。

警告:博主不是计算机专业学生,可能有笔误,有错请见谅,欢迎指正。

原作者:FR1SKY,ID: weixin_42273602,发布于CSDN

系统:MacOS Monterey系统 版本12.3

芯片:Apple M1 Ultra

Python版本:3.10(本人认为也适用于3.9)

一、下载并安装Miniconda3

(推荐使用bash方法安装,但博主不确定pkg安装是否一定会失败)

点击进入https://docs.conda.io/en/latest/miniconda.html

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值