劈尖等厚干涉条纹matlab,光学之劈尖的等厚干涉条纹.ppt

该文详细解析了劈尖的等厚干涉现象,通过红光、绿光和蓝光的干涉条纹分布来阐述波长对干涉条纹数量的影响。文中提到,红光干涉条纹均匀分布,共有10条,而绿光和蓝光分别产生14条和17条。当三种光同时照射时,会产生彩色干涉条纹。劈尖角度为0.0072o,最大厚度为2.5微米。
摘要由CSDN通过智能技术生成

{范例7.2} 劈尖的等厚干涉条纹 一透明劈尖的折射率为n = 1.5,放在空气之中。用真空中波长为λ = 750nm的红光垂直照射劈尖,可观察到10个完整的明条纹,明纹的间距为d = 2mm,求劈尖的角度和高度。红光的等厚干涉条纹是如何分布的?如果用波长分别为540nm和440nm的绿光和蓝光垂直照射劈尖,可观察到多少个明条纹?如果三种波长的光强度相同,它们同时垂直照射劈尖时会出现什么现象? [解析]如图所示,劈尖的角度很小,真空波长为λ的单色光垂直入射到薄膜上时,产生反射光a和折射光b。 b经过薄膜的下表面反射之后在上表面与a相遇。 由于a、b两束光是同一束入射光分为两部分产生的,因而是相干光,相遇时可产生干涉条纹。 一束光的强度分成两部分,这种产生干涉的方法称为分振幅法。 n1 n2 n e a b θ Δe d h {范例7.2} 劈尖的等厚干涉条纹 设劈尖厚度为e,b光比a光多传播了2e的几何路程,多传播的光程为2ne。 a光是从光疏媒质入射到光密媒质的表面发生反射的,因而有半波损失。 b光是从光密媒质入射到光疏媒质的表面发生反射的,因而没有半波损失。 两束光的光程差为δ = 2ne + λ/2, n1 n2 n e a b θ Δe d h 明纹形成条件为δ = 2ne + λ/2 = kλ,(k = 1,2,3,…) 暗纹形成条件为δ = 2ne + λ/2 = (2k + 1)λ/2,(k = 0,1,2,…) 当k = 0时,e = 0,可知:劈尖的尖端是暗纹。 同一条纹的劈尖厚度是相同的,因此这种干涉称为等厚干涉。 干涉级次k越大,对应的厚度e也越大,相邻明纹或暗纹之间的厚度差为Δe = λ/2n, 可知:相邻明纹或暗纹的厚度差相同。 {范例7.2} 劈尖的等厚干涉条纹 由于劈尖的角度很小,尖角为 一条完整的明条纹介于两条暗纹(中心)之间,完整明纹的最高级次k = 10,劈尖的高度为 n1 n2 n e a b θ Δe d h 干涉光的强度可表示为 干涉条纹由光的强度决定。 红光的干涉条纹是均匀分布的。干涉图样的最左边是尖劈的顶端,顶端出现暗条纹;图样共有10条明条纹。劈尖的角度为0.0072o,最大厚度为2.5微米。 绿光的干涉条纹也是均匀分布的,干涉条纹达到14条,这是因为绿光的波长比红光的波长短的缘故。 蓝光的干涉条纹仍然是均匀分布的,干涉条纹达到17条之多,这是因为蓝光的波长比绿光的波长还要短的缘故。 三种光混合后垂直照射劈尖,产生了彩色干涉条纹。 最左边是三种光的暗纹,当劈尖的厚度增加时,三种光叠加在一起,形成白色条纹。 由于红光的条纹最宽,所以在蓝光和绿光的暗条纹处出现红光的条纹。 三种光的条纹错位叠加,就形成彩色条纹。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值