CVPR2020 有关Cross Domain论文阅读总结与思考

有关CVPR2020中Cross Domain论文阅读总结与思考

论文总结

  1. Progressive Adversarial Networks for Fine-Grained Domain Adaptation

作者:Sinan Wang, Xinyang Chen, Yunbo Wang, Mingsheng Long, and Jianmin Wang

所解决的问题是在Fine-Grained中的跨域分类(Cross Domain)

解决问题的出发点:为使源域与目标域的数据分布能趋于一致,即解决domain shift的问题,作者认为造成这个问题的原因有两点,一是large intra-class variation(大的类内部差异),二十small inter-class variation(小的类间差异),这样就会造成当将在源域上训练得到的模型实现跨域映射时,出现预测错误的问题.

  1. Enhanced Transport Distance for Unsupervised Domain Adaptation

作者:Mengxue Li, Yi-Ming Zhai, You-Wei Luo, Peng-Fei Ge, Chuan-Xian Ren

所解决的问题是无监督跨域分类(Unsupervised Domain Adaptation,即UDA)

该文章使用Transport Distance来实现跨域分类,其中使用最多的Transport Distance是Optimal Transport(OT) Distance,作者从OT Distance的不足之处(bottlenecks)出发,一是深度学习所使用的mini-batch策略其实是无法真实的反映整个数据的类别距离的,二忽略了目标域的标签信息和潜在的结构。作者解决这个问题的方法是:利用Attention Mechanism,实现Reweight Distance,最终使模型能够学习到具有区分性的特征,这个特征即可实现无监督跨域适应(UDA)。

  1. Domain Adaptation for Image Dehazing

作者:Yuanjie Shao, Lerenhan Li, Wenqi Ren, Changxin Gao, Nong Sang

所解决的问题是图片去雾中的跨域适应。

作者使用两个方法来使源域与目标域之间的domain shift减小,一是image translation,二是style transter,作者通过dehazing module和image translation module两个模块实现图像的跨域去雾。

  1. Cross-Modal Cross-Domain Moment Alignment Network for Person Search

作者:Ya Jing,Wei Wang,Liang Wang, Tieniu Tan

所解决的问题是跨模态、无监督跨域的Person search

跨模态、跨域的示意图
作者解决该问题的方法核心思想是用类距来衡量跨域之间的距离,提出了一种名为MAN(Moment Alignment Network)的网络。

  1. Single-Side Domain Generalization for Face Anti-Spoofing

作者:Yunpei Jia, Jie Zhang, Shiguang Shan,Xilin Chen

所解决的问题是跨域人脸防欺骗

该论文指出,当不使用任何目标域数据时,可利用domain generalization(域泛化)实现域自适应;论文中的参考文献18、33是对域泛化的解释与利用。如下图所示,一般实现域泛化需要多个域的数据集。
在这里插入图片描述

  1. Reliable Weighted Optimal Transport for Unsupervised Domain Adaptation

作者:Renjun Xu, Pelen Liu, Liyan Wang, Chao Chen, Jindong Wang

所解决的问题是对现有的Optimal Transport Distance进行改进以实现无监督跨域自适应。

论文中提出实现跨域自适应的方法有两种,一是学习域不变特征,二是Optimal Transport,但是两种方法均存在不足之处是忽略了域内部的结构。作者提出Reliable Weighted Optimal Transport,该方法可实现Discriminate Features Learning以达到学习深度不变特征;论文中提出了两个名词,收缩子空间、判别质心损失,这两个点是作者思想的核心。
在这里插入图片描述

  1. Stochastic Classifiers for Unsupervised Domain Adaptation

作者:Zhihe Lu,Yongxin Yang, Xiatian Zhu,Cong Liu,Yi-Zhe Song, Tao Xiang

所解决的问题是以最少的分类器训练实现无监督跨域适应

文章中指出,在深度学习中当增加分类器的数量时,模型的预测能力将会增加,但是会使模型参数增加以及可能会造成过拟合问题。而作者考虑到这个问题,并在这个基础上提出一种分类器——随机分类器(STAR),该分类器与传统的分类器的区别是其参数是用高斯分布表示(以方差表示分类器的差别),而传统的分类器是使用权重向量表示参数。作者认为使用随机分类器,由于其参数是一个高斯分布,因此其对域的容忍度会比较高,因此可实现无监督跨域适应。

论文中还有几点值得学习的点:一,作者认为全局的分布对齐会造成次优表现(sub-optimal performance),比如MMD、CMD、Wassertein Distance,因为其忽略局部类间的对齐;二是对抗学习的三个层次:特征层次、像素层次、输出层次;三、作者提出的随机分类器与随机深度学习是有相似之处,比如Bayesian Neural Networks,但是随机分类器只是一种训练的策略,其可以与现有的很多的深度学习方法结合。

  1. Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation

作者:Yangtao Zheng,Di Huang,Songtao Liu,Yunhong Wang

所解决的问题是目标检测中利用粗粒度特征到细粒度特征实现跨域自适应

在这里插入图片描述
虽然该文章是基于目标检测的,但是文中提到了一个重要的概念——域混淆(Domain Confusion)。作者分两步解决上述问题,第一步是使用Attention-based Region Transfer(ART)实现前景与背景的分离,即增强前景的重要性;第二步是利用Multi-layer Adversarial Learning 实现域混淆,域混淆即使视觉任务中无法分别出与域有关的背景。

  1. Cross-Domain Semantic Segmentation via Domain-Invariant Interactive Relation Transfer

作者:Fengmao Lv,Tao Liang,Xiang Chen,Guosheng Lin

所解决的问题是跨域语义分割

作者提出Pivot Interaction Transfer来重构主信息。

  1. Light-weight Calibrator: A Separable Component for Unsupervised Domain Adaptation

作者:Shaokai Ye,Kailu Wu,Mu Zhou,Yunfei Yang,Sia huat Tan,Kaidi Xu,Jiebo Song

所解决的问题是利用校准器实现无监督跨域适应

在这里插入图片描述如上图所示,作者将自己提出的方法与现有的方法作定义上的对比,目前现有的无监督跨域自适应方法不仅仅将分类器的模型改变,同时也改变了数据的分布。作者认为在不改变分类器的情况下,通过改变数据的分布也可实现跨域自适应。

  1. Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation

作者:Myeongjin Kim, Hyeran Byun

所解决的问题是学习不变纹理特征实现跨域场景分割自适应

在
作者考虑到在计算机视觉训练中,很多的图片都是合成的,但是合成图片和真实世界的图片之间是存在一定的域差异,为解决这个问题,作者从提取域不变纹理特征来实现跨域场景分割,为更好的提取不变纹理,作者通过使域多样化使网络更容易提取到不变纹理。

阅读思考

无监督跨域自适应应用于很多领域,不单单可用于分类,也在行人再识别、场景分割等领域也有应用,因为跨域自适应是很多计算机视觉任务应用于实际场景所需要考虑的问题,实验室采集的图片或者合成的图片与真实场景之间还是存在差异的,比如亮度、与识别无关的其他环境因素等。但是不同的视觉任务,处理任务的方法都是不一样的,因此在实现跨域适应的时候还是存在差异的。

在对大概有30篇跨域自适应论文阅读后,我认为如何增大同一域下的不同类之间的距离是一个十分重要的点,当利用深度网络对图片的特征进行提取时, 当不同类之间的特征差别越大,其实就说明类别的独特性更强,因此特征便与域的相关性就更弱。其次,利用生成对抗网络增加域的多样性也是一个值得深究的地方,因为当数据只有一个单一的域时,要实现在不利用任何目标域数据的情况下实现跨域自适应,增加域的多样性就可以增强模型的泛化能力,即域泛化。

当前的任务

在阅读了这些论文之后,对于无监督跨域自适应已经有了一个比较清楚的认识,当前的任务是通过利用代码实现对特征的提取,并将在单一数据集(单一域)上训练的模型直接移植到另一个数据集上进行测试,并将模型在测试集上所提取的特征与训练集上进行对比,可视化特征的分布,即可视化domain shift造成跨域时模型性能下降的问题。

假如上一步完成,将开始对如何解决这种由domain shift造成的性能下降问题,寻找可能的解决办法。

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
2020年的计算机视觉与模式识别国际会议(CVPR)中,小样本学习成为了一个热门话题。在CVPR 2020中,许多重要的研究都集中于小样本学习解决方案。 小样本学习的意义在于模型如何从很少的数据点中学习。在现实世界中,我们面临的很多问题都是小样本问题,例如医学影像分析,金融风险评估,自然语言处理等等。采用小样本学习的方法为这些问题提供了有效的解决方案。 在2020年的CVPR中,研究者们提出了许多小样本学习算法和模型。其中最重要的是元学习。元学习在小样本学习中非常重要。元学习的基本思想是通过迁移学习,让模型从不同数据集中进行学习并进行知识迁移学习。在元学习中,一个模型会从一个任务中学习并推广到其他任务中。 另一种常见的小样本学习方法是采用生成式对抗网络(GANs)进行特征提取和图像生成。研究者们使用GANs来生成新的图片样本,从而增加数据样本的数量。这种方法在小样本学习中非常有用,因为GANs可以生成无限数量的样本集。 总之,小样本学习在计算机视觉和模式识别领域中变得越来越重要。在CVPR 2020中,我们看到了许多新方法和技术的出现,它们为解决小样本学习问题提供了前所未有的解决方案。我们相信,随着更多的研究和技术的进步,小样本学习将成为计算机视觉和模式识别的重要工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值