安装faster-rcnn pytorch1.0.0版本以及importerror cannot import name '_mask'

https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0

本人安装master分支,pytorch要求为0.4.0,具体安装方法可参考我之前的博文

但是后续运行时遇到了其他的问题

后改为安装分支pytorch1.00,

Step 1:参考下博文安装faster-rcnn

https://blog.csdn.net/weixin_43869778/article/details/96837042

Step2:  运行命令时遇到cannot import name '_mask'

参考https://github.com/cocodataset/cocoapi/issues/59#issuecomment-469859646,是这里的coco不work

首先下载最新的cocoapi并make

https://github.com/cocodataset/cocoapi

将原来faster-rcnn.pytorch/coco文件夹的内容删除,替换为刚下载并编译成功的cocoapi内的内容

删掉faster-rcnn.pytorch/lib里面的pycocotool文件夹。

重新运行,faster-rcnn就运行起来了

 

Step3: 其他报错

ImportError: cannot import name imread

将scipy降级

pip install scipy==1.2.1

<think>好的,用户想找Fast R-CNN的复现代码。首先,我需要回忆一下相关的信息。根据引用[1],Fast R-CNN的代码是用Python和C++写的,基于Caffe框架,并且是MIT开源许可证发布的,在GitHub上的链接是https://github.com/rbgirshick/fast-rcnn。这里应该直接给出这个仓库的链接,用户就能访问到官方代码了。 接下来,用户可能需要一些使用指导。比如安装依赖,运行demo的步骤,还有训练数据集的准备。我应该分步骤说明这些,确保用户能一步步操作。例如,克隆仓库、安装Caffe、下载预训练模型和数据集这些关键步骤。同时要提醒用户注意版本兼容性问题,因为Caffe可能在不同版本之间有变化,需要按照仓库的README进行调整。 另外,用户可能对复现结果感兴趣,可以引用论文中的结果,比如在PASCAL VOC 2007上的检测结果,如引用[3]提到的68.1%的mAP,这样用户能验证他们的实现是否正确。还可以提到Faster R-CNN结合RPN的改进,如引用[2]和[4]中的内容,但用户的问题主要是Fast R-CNN,所以这部分可能作为扩展信息,简要提及即可。 然后,相关问题部分需要考虑用户可能的后续问题。例如,如何准备训练数据、与其他框架的对比、性能优化技巧,以及Fast R-CNN和Faster R-CNN的区别。这些问题能帮助用户更深入地理解和应用Fast R-CNN。 最后,需要确保回答符合格式要求,使用中文,行内公式用$...$,独立公式用$$...$$,但在这个问题中可能用不到太多数学公式。不过要检查是否有变量或方程需要格式化,目前看起来可能不需要。同时,引用标识要正确添加在对应的引用位置末尾,比如[^1]、[^3]等。 总结步骤:先给出官方代码链接,再提供使用步骤,注意事项,复现结果,然后生成相关问题。确保所有引用正确,并且回答结构清晰,分点说明,方便用户理解。</think>根据引用[1]提供的官方信息,Fast R-CNN的官方实现代码由作者Ross Girshick团队开源在GitHub仓库: **官方代码库** https://github.com/rbgirshick/fast-rcnn ### 代码使用指引 1. **环境依赖** 需要安装Caffe框架(基于引用[1]中提到的Caffe实现),建议使用Python 2.7环境和CUDA加速。代码仓库中提供`requirements.txt`文件,可通过以下命令安装依赖: ```bash pip install -r requirements.txt ``` 2. **预训练模型下载** 需要下载VGG-16等预训练模型(对应引用[4]中的卷积网络结构),官方仓库提供下载脚本: ```bash ./data/scripts/fetch_fast_rcnn_models.sh ``` 3. **数据集准备** 支持PASCAL VOC数据集(如引用[3]中的VOC 2007/2012),需按标准目录结构组织数据: ``` Fast-RCNN ├── data │ └── VOCdevkit2007 │ └── VOC2007 ``` 4. **训练与测试** 运行示例命令: ```bash ./tools/train_net.py --gpu 0 --solver models/VGG16/solver.prototxt --weights data/imagenet_models/VGG16.v2.caffemodel ``` ### 关键注意事项 - 复现论文结果时需注意训练数据组合(如引用[3]中提到的"07+12"联合训练集) - 默认使用Selective Search提议区域(非RPN,RPN为Faster R-CNN组件[^4]) - 目标检测mAP指标可达68.1%(VOC 2007测试集)[^3] ### 扩展实现资源 若需包含RPN的改进版本,可参考Faster R-CNN实现(引用[2][4]): - PyTorch复现:https://github.com/jwyang/faster-rcnn.pytorch - TensorFlow复现:https://github.com/endernewton/tf-faster-rcnn
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值