理解K-means聚类算法及Python,Java实现

K-means聚类算法简介

举个栗子

图一有ABCDE这五个点。

我们先随机选择两个点作为我们的初始聚类中心(簇中心点),标记为红点和黄点。

开始第一次聚类。对于所有点分别计算其到红点和黄点的距离,我们发现AB点到红点距离更近,而CDE三个点到黄点的距离更近。于是,AB为一簇,CDE为一簇。然后对于这两簇,分别计算簇内各点的均值,标记为新的红点和黄点(图三)。

开始第二次聚类。我们发现ABC点到红点距离更近,而DE点到黄点的距离更近。于是,ABC为一簇,DE为一簇。对于这两簇,分别计算簇内各点的均值,标记为新的红点和黄点(图五)。

开始第三次聚类。我们发现仍然是ABC为一簇,DE为一簇。计算新的簇中心点,发现与第二次聚类中心点一致。

结束。

sklean.cluster.KMeans方法

form sklearn.cluster import KMeans
import numpy as np

km = KMeans(n_clusters=3)  # 分成三类
label = km.fit_predict(cityData)  # cityData由31个城市的8个数据组成的list
expenses = np.sum(km.cluster_center_, axis=1) # 聚类中心点的数值(每一簇点各个属性的均值)加和

KMeans方法参数 

Python 实现

'''
算法过程如下:
1)从N个数据随机选取K个数据作为质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类
3)重新计算已经得到的各个类的质心
4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束
'''
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding='utf-8')
import random
import numpy as np


data = [[1.0, 2.0], [3.0, 8.0], [2.0, 2.0], [1.0, 1.0], [5.0, 3.0],
        [4.0, 8.0], [6.0, 3.0], [5.0, 4.0], [6.0, 4.0], [7.0, 5.0]]
 
def findCentroids(dataset, k):
 	return random.sample(dataset,k)

def calculateDis(dataset, centroids):
	values = [[],[],[],[]]
	distances = [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值