Hive架构
Hive架构图
1)用户接口:Client
CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)
2)元数据:Metastore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
原因在于Hive默认使用的元数据库为derby,开启Hive之后就会占用元数据库,且不与其他客户端共享数据,如果想多窗口操作就会报错,操作比较局限。以我们需要将Hive的元数据地址改为MySQL,可支持多窗口操作。
3)Hadoop
使用HDFS进行存储,使用MapReduce进行计算。
4)驱动器:Driver
(1)解析器(SQL Parser):
将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
(2)编译器(Physical Plan):
将AST编译生成逻辑执行计划。
(3)优化器(Query Optimizer):
对逻辑执行计划进行优化。
(4)执行器(Execution):
把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。