1.大数据概论

大数据指的是海量、高增长和多样的信息资产,其4V特点包括体积(大量)、速度(高速)、多样性和价值密度(低)。文章提到,大数据在国家政策中占据重要位置,带动了相关教育发展,且由于技术复杂,人才需求旺盛,早期从业者具有优势。数据部门在产品需求下进行平台搭建、数据分析并实现数据可视化。
摘要由CSDN通过智能技术生成

1.1 大数据概念

大数据(Big data):指无法在一定时间范围内用常规软件工具进行捕捉丶管理和处理的数据集合。
海量,高增长率和多样化的信息资产。
主要解决,海量数据的存储和海量数据的分析计算问题。

1.2 大数据特点(4V)

  • 1.2.1 Volumn(大量)
  • 1.2.2 Velocity(高速)
  • 1.2.3 Variety(多样)
  • 1.2.4 Value(低价值密度):对有价值的数据进行“提纯”

1.3 大数据发展场景
1.党十八大 — 国家大数据战略 《促进大数据发展行动纲要》
2.党十九大 — 推动互联网,大数据,人工智能和实体经济深度融合
3.人才缺口大 — 先入行者吃肉,后入行者喝汤,最后到的买单
4.一些高校开始申请开设大数据课程
5.高新技术,大牛少,竞争少

1.4 部门业务流程分析

产品提需求 --> 数据部门搭建平台,分析指标 --> 数据可视化

1.5 部门组织结构
在这里插入图片描述

大数据概论是指对海量的、复杂的、高维度的数据进行收集、处理和分析的一门学科。随着信息技术的快速发展,大量的数据被产生和积累,想要从这些数据中获得有价值的信息和洞察力,就需要借助大数据概论的方法和技术。 大数据概论主要包括以下几个方面。首先是大数据的处理和存储技术,包括分布式存储系统、并行计算框架、分布式文件系统等。这些技术可以帮助我们有效地存储和处理大规模的数据。其次是数据挖掘和机器学习的方法,通过这些方法可以从大数据中发现隐藏的模式和规律,并用于预测和决策。此外,数据可视化和探索性数据分析也是大数据概论的重要内容,通过可视化技术可以将复杂的数据转化为直观的图表和可视化图像,帮助人们更好地理解和分析数据。 大数据概论在各个领域都有广泛的应用。在商业领域,大数据概论可以帮助企业分析市场趋势、预测产品需求,并进行个性化推荐和营销策略优化。在金融领域,大数据概论可以用于风险控制和反欺诈,帮助银行和保险公司降低风险和损失。在医疗领域,大数据概论可以用于疾病预测和诊断,辅助医生做出更准确的诊断和治疗方案。 总之,大数据概论是一门应用于处理和分析大数据的学科。它涵盖了数据处理和存储技术、数据挖掘和机器学习方法,以及数据可视化和探索性数据分析等方面。通过应用大数据概论的方法和技术,可以从海量的数据中提取有价值的信息和知识,为各个领域带来新的机遇和挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值