机器学习
文章平均质量分 97
通过理解算法的原理,辅以简单的模拟数据,最后通过手写代码复现算法的适用性。
朱莉安娜·
学习路上的一员,对机器学习,编程,数据分析,人工智能感兴趣,Recording for review。
展开
-
数据挖掘之线性回归原理(附代码)
文章目录1.什么是线性回归2.最大似然估计(MLE)3.利用正规方程求解(矩阵求导)4.梯度下降1.什么是线性回归这里引用百度百科的解释:利用数理统计中的回归分析,来确定变量间相互依赖的定量关系的一种统计分析方法,其表达形式为 y(i)=wTx(i)+e(i)y^{(i)} = w^Tx^{(i)}+e^{(i)}y(i)=wTx(i)+e(i),eee为误差(用来代替统计误差或者抽样误差),它服从均值为0的标准正态分布。例如成年人的月收入与月消费的关系,二者之间肯定存在某种关系。在求解之前,通常会给原创 2021-03-23 17:38:33 · 961 阅读 · 0 评论 -
SVD奇异值分解与PCA的底层原理解析
文章目录1、特征值与特征向量2、SVD的定义1、特征值与特征向量 在了解SVD分解前,先回顾一下特征值与特征向量。假设矩阵AAA为n阶方阵,向量viv_ivi满足:Avi=λviAv_i=λv_iAvi=λvi用矩阵表示所有特征值与所有特征向量的关系则为:A∗V=V∗diag(λ1,λ2,...)A*V=V*diag(λ_1,λ_2,...)A∗V=V∗diag(λ1,λ2,...)因此只要满足上面的等式原创 2021-03-12 19:11:47 · 470 阅读 · 1 评论 -
决策树算法原理详解ID3、C4.5和CART
文章目录什么是决策树熵、条件熵ID3、C4.5CART什么是决策树 决策树可以简单理解为是一种根据特征信息不断分裂,直至达到某一阈值(可以是max_depth、min_node_leafs等)分裂结束,就是一串的if…then…结构。那么谁作为第一个if判断的特征呢?这就需要熵、条件熵、信息增益登场了。熵、条件熵 熵是表示随机变量Y不确定的度量,熵越大则越混乱越无法确定;越小则越肯定,例如拜登是男的,entropy原创 2021-01-28 16:53:36 · 316 阅读 · 0 评论