给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1
提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
解题思路:
回溯
数组 nums 的每个元素都可以添加符号 + 或 -,因此每个元素有 2 种添加符号的方法,n 个数共有 2^n 种添加符号的方法,对应 2^n 种不同的表达式。当 n 个元素都添加符号之后,即得到一种表达式,如果表达式的结果等于目标数 target,则该表达式即为符合要求的表达式。
可以使用回溯的方法遍历所有的表达式,回溯过程中维护一个计数器 count,当遇到一种表达式的结果等于目标数 target 时,将 count 的值加 1。遍历完所有的表达式之后,即可得到结果等于目标数 target 的表达式的数目。
Python代码:
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
@lru_cache(None)
def dfs(index, ans):
if index == len(nums):
if ans == target:
return 1
else:
return 0
res = 0
res += dfs(index + 1, ans + nums[index])
res += dfs(index + 1, ans - nums[index])
return res
return dfs(0, 0)