c语言迪杰斯特拉算法求最短路径,迪杰斯特拉 ( Dijkstra ) 最短路径算法

迪杰斯特拉算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本思想

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S 中只有起点 s;U 中是除 s 之外的顶点,并且 U 中顶点的路径是 "起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到 S中;接着,更新 U 中的顶点和顶点对应的路径。 然后,再从 U 中找出路径最短的顶点,并将其加入到 S 中;接着,更新 U 中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。

迪杰斯特拉算法图解

76557297c7ebb65608c3064ccfc5867c.png

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

0f8919c1aedbf0221836cbdf7568229f.png

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。

此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。     注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。

上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。

此时,S={D(0),C(3)}, U={A(∞),B(13),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。

上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。

此时,S={D(0),C(3),E(4)}, U={A(∞),B(13),F(6),G(12)}。

第4步:将顶点F加入到S中。

此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

迪杰斯特拉算法的代码(C语言)

以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

// 邻接矩阵

typedef struct _graph

{

char vexs[MAX]; // 顶点集合

int vexnum; // 顶点数

int edgnum; // 边数

int matrix[MAX][MAX]; // 邻接矩阵

}Graph, *PGraph;

// 边的结构体

typedef struct _EdgeData

{

char start; // 边的起点

char end; // 边的终点

int weight; // 边的权重

}EData;

Graph是邻接矩阵对应的结构体。

vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

EData是邻接矩阵边对应的结构体。

2. 迪杰斯特拉算法

/*

* Dijkstra最短路径。

* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。

*

* 参数说明:

* G -- 图

* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。

* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。

* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。

*/

void dijkstra(Graph G, int vs, int prev[], int dist[])

{

int i,j,k;

int min;

int tmp;

int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。

// 初始化

for (i = 0; i < G.vexnum; i++)

{

flag[i] = 0; // 顶点i的最短路径还没获取到。

prev[i] = 0; // 顶点i的前驱顶点为0。

dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。

}

// 对"顶点vs"自身进行初始化

flag[vs] = 1;

dist[vs] = 0;

// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。

for (i = 1; i < G.vexnum; i++)

{

// 寻找当前最小的路径;

// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。

min = INF;

for (j = 0; j < G.vexnum; j++)

{

if (flag[j]==0 && dist[j]

{

min = dist[j];

k = j;

}

}

// 标记"顶点k"为已经获取到最短路径

flag[k] = 1;

// 修正当前最短路径和前驱顶点

// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。

for (j = 0; j < G.vexnum; j++)

{

tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出

if (flag[j] == 0 && (tmp < dist[j]) )

{

dist[j] = tmp;

prev[j] = k;

}

}

}

// 打印dijkstra最短路径的结果

printf("dijkstra(%c): \n", G.vexs[vs]);

for (i = 0; i < G.vexnum; i++)

printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);

}

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据提供的引用内容,可以了解到Dijkstra算法是一种用于解带权图中单源最短路径算法。下面是使用C语言实现Dijkstra算法最短路径的步骤: 1. 定义一个数组dist,用于存储源点到各个顶点的最短距离,初始化为无穷大。 2. 定义一个数组visited,用于标记每个顶点是否已经确定最短路径,初始化为false。 3. 将源点的dist值设为0。 4. 循环n次,每次找到一个未确定最短路径的顶点u,使得dist[u]最小,将u标记为已确定最短路径。 5. 遍历u的所有邻接点v,如果v未确定最短路径且dist[u]+w(u,v)<dist[v],则更新dist[v]的值为dist[u]+w(u,v),其中w(u,v)表示边(u,v)的权值。 6. 重复步骤4和步骤5,直到所有顶点的最短路径都被确定。 下面是使用C语言实现Dijkstra算法最短路径的示例代码: ```c #include <stdio.h> #include <limits.h> #define V 6 int minDistance(int dist[], bool visited[]) { int min = INT_MAX, min_index; for (int v = 0; v < V; v++) { if (!visited[v] && dist[v] <= min) { min = dist[v]; min_index = v; } } return min_index; } void printSolution(int dist[]) { printf("Vertex \t Distance from Source\n"); for (int i = 0; i < V; i++) { printf("%d \t %d\n", i, dist[i]); } } void dijkstra(int graph[V][V], int src) { int dist[V]; bool visited[V]; for (int i = 0; i < V; i++) { dist[i] = INT_MAX; visited[i] = false; } dist[src] = 0; for (int count = 0; count < V - 1; count++) { int u = minDistance(dist, visited); visited[u] = true; for (int v = 0; v < V; v++) { if (!visited[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) { dist[v] = dist[u] + graph[u][v]; } } } printSolution(dist); } int main() { int graph[V][V] = {{0, 4, 0, 0, 0, 0}, {4, 0, 8, 0, 0, 0}, {0, 8, 0, 7, 0, 4}, {0, 0, 7, 0, 9, 14}, {0, 0, 0, 9, 0, 10}, {0, 0, 4, 14, 10, 0}}; dijkstra(graph, 0); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值