动画讲编程
码龄5年
关注
提问 私信
  • 博客:2,799
    视频:955
    3,754
    总访问量
  • 5
    原创
  • 2,041,105
    排名
  • 48
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-12-30
博客简介:

muyutang_group的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得1次评论
  • 获得32次收藏
创作历程
  • 5篇
    2020年
成就勋章
TA的专栏
  • python
  • 人工智能
    1篇
  • 机器学习
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习自然语言处理数据分析
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习,梯度下降算法,问题引入.mp4

发布视频 2020.09.07

机器学习,梯度下降算法,问题引入

机器学习,梯度下降算法,问题引入 机器学习,梯度下降算法,问题引入 今天讲解的内容是梯度下降算法。梯度下降算法在机器学习中的应用十分广泛,该算法的最主要目的是通过迭代的方法找到目标函数的最小值,经常用来解决线性回归和逻辑回归等相关问题。本节课主要讲解梯度下降算法解决一元线性回归问题,包括四个部分,问题引入、数学理论、算法实现、上机实验。来看一个生活中的例子。在买房的时候,房屋价格
原创
发布博客 2020.09.07 ·
300 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

机器学习, 梯度下降算法中的数学原理

机器学习,梯度下降算法中的数学原理 一、导数二、多元函数三、偏导数四、梯度 机器学习,梯度下降算法,数学原理,高等数学如此简单 今天讲解的内容是梯度下降算法中的数学原理。其中包括导数、多元函数、偏导数和梯度。接下来我们逐一进行讲解。一、导数首先来看导数。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。例如,图1表示赛跑时,运动员的速度v随时间t变化的曲线。如果希望得到速
原创
发布博客 2020.09.04 ·
899 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

程序员面试题,字符是否唯一

发布视频 2020.09.02

机器学习,梯度下降算法,数学原理,高等数学如此简单

发布视频 2020.09.02

悬挂纸牌

悬挂纸牌 一、问题描述二、题目分析三、跑通样例四、输入与输出测试 算法设计入门与提高,poj 1003 Hangover,悬挂纸牌 今天讲解的题目选自poj,1003 Hangover,悬挂纸牌。一、问题描述题目是这样的,在桌子上有一叠纸牌,将这些纸牌悬放在桌子边缘。纸牌在放置时,包括两个部分,一部分暴露在桌面或其他纸牌外面,一部分在里面。假如放置n张纸牌,每张纸牌的长度为1,那
原创
发布博客 2020.08.31 ·
414 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

算法设计入门与提高,poj 1003 Hangover,悬挂

发布视频 2020.08.31

奇妙的算法世界,单源最短路径,迪杰斯特拉算法

发布视频 2020.08.27

单源最短路径,迪杰斯特拉算法

单源最短路径,迪杰斯特拉算法 一、问题描述二、思路梳理三、跑通样例四、代码实现 奇妙的算法世界,单源最短路径,迪杰斯特拉算法 今天我们要讲解的内容是单源最短路径,迪杰斯特拉算法。一、问题描述假期来临,小漫打算去海南旅行,如果出发地北京和目的地海南之间有多条路径,不同路径上有不同的中转城市。城市之间如果可以通行,通行的路程是已知的。那么从北京到海南的最短距离是多少呢?例如,从北京出
原创
发布博客 2020.08.26 ·
743 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

链表经典题目: 回文链表leetcode 234

链表经典题目: 回文链表leetcode 234一、原题回放二、思路梳理三、代码实现四、更优化思路五、代码实现六、Python实现七、面试重要知识点提炼八、进一步思考九、相关题目一、原题回放LeetCode 234:给定一个单向链表,判断它是否为回文链表并返回true或false。例如下图这样一个链表,它的正序为“122”,反序为“221”,正序和反序不相同,因此我们认为其不是回文链表。...
原创
发布博客 2020.01.04 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏