物理实验 第36卷第期 Vol. 3 6 No. 4 PHYSICS EXPERIMENTATION Apr.,2015 2016 4 学生园地摘 关于串联弹簧振子的研究 黄建博苏壮a王四海 b 北京邮电大学信息与通信工程学院;b理学院北京 1的876) 要利用微分方程和拉普拉斯变究串联弹簧振子系统的运动规律推导其运动方程,分析频率分量以及波 峰一波谷比的极值条件串眠弹簧振子系統运动是若干正弦运动的加頻率分量的个数等于串朕的弹簧个数在某些条件下这些频率分量还会趋于相等 关键词.串联弹簧振子胡克定律,拉普拉斯变挨傅里叶变 文献标识码A 中图分类号:0321 文章编号.1005一464,2(2G1的℃ 4删G32一05 振子在弹質的回复力作用下做正弦运动其 1二元串联弹簧振子的运动 动力学方程为 1.1方程求解 (0 个弹簧振子串联(如图1所示研究m的 运动学方程为 2 运动轻弹簧劲度系数分别为為和為原长分别 (2〕 d严 为/和/物体质量分别为m和“,水平面光 由以上两式可得 滑初态弹簧伸长过为Al山伸长量为A m.r +差x一0, 妁0〕一,,.C2(0)—AJ+A2.设相对其平 即 或 衡位置(/,处)位移为 相对自身平衡位置 (/,+ /处〕位移为 (4〕 上2 · 动力学(微分方程 令 一解得. 一后0C0一、0〕乛m ]上1, (5) x(0 cos(帚〕. 单个振子在弹簧回复力作用下做离平衡点的位移随时间成正弦变化的运动位移对时间求导可以得到其速度逋时间的变化也是正弦变化速度对时间求导又可得到其加速度随时间成正弦变化那么这一系列性质对串朕的双弹簧系统是否适用呢?各个弹簧的位移随时间怎样变化呢?进而当有个弹簧振子串朕时它们的运动颊律又是怎样的呢?基于这些问题本文推导了多弹簧 图 二元串联弹簧振子 1 振子的位移表达式并使用Matlab软件仿真表现 联立方程组消去得. 出振子的位移波形进而提出一种可能的教学演 (狲] + 0m2 + 0狲0 ·0 +.0一0、 示模具 与冫2主2 (7》 ..第乜届全国高等院校物理演示实验教学研讨会”论文收稿日期2015一一1删1改日期:2015一12一却 北京电夫学大学生研究创新基金(N。羊20151001 08〕.北京市共建项目专项 基全项目. 囗呵囗 0 0四4一),男广东廉江人北京邮电大学信息与通蓓工程学院通信工程专业2m3级 作者简介:黄建博本科生 王四海0966一男匹川大邑人北京邮电大学理学院物理系高级工程师碩士从事大学 指导教师. 物理演小实验學工作 黄建等.关于串联弹簧振子的研究 4 33 特征方程. 解得 冫]冫2疒(2 0忉0产+ 0一 (23) 一02 解得特征根 一(出+A2)Q 2 (2的 02一0] 该系统中外侧小球的运动是2一个简谐振动 0的 的叠加2个简谐振动的频率和振幅都不等于弹 2距 簧的本征频率和形变量而是后者的变陨 一4的, (Il) 1.2解的讨论 因为第2个小球的运动更易于观察所以这 (0 (10 里只对第2个小球的运动方程进行讨论联立式 27 7 2 其中 可知改变m与m之比或与之比会改变 (13〕 才2, 2 0 则随 监1 ==A2,0(的 和m而变化取 运动方程图形如 (1的 2烈2. 方程的解 x (t) —CITcos(0]的+ 0一吓(0 t) (15) 050505050 .00〕= 0].c(0]的+ 02c0s(02D, (16) 其中 (17〕 .011 是一40L (18〕 02 2幻丿2 2 2个串联弹簧振子的运动最终趋向等幅振 0 20
弹簧振子串联matlab,关于串联弹簧振子的研究
最新推荐文章于 2022-06-22 02:14:49 发布
本文研究了串联弹簧振子的运动规律,通过微分方程和拉普拉斯变换分析了系统的运动方程,揭示了频率分量与波峰一波谷比的极值条件。研究表明,串联弹簧振子的运动是多个简谐振动的叠加,频率分量数量等于弹簧个数,在特定条件下,这些频率分量可能趋于相等。通过Matlab仿真展示了振子的位移波形,提出了教学演示模具的设计思路。
摘要由CSDN通过智能技术生成