薄板样条函数 matlab,基于薄板样条插值图像配准的Matlab实现

本文介绍了薄板样条函数在二维图像配准中的应用,通过Matlab实现薄板样条映射,详细展示了计算过程和相关代码。利用薄板样条插值解决图像配准问题,通过映射函数确定源图像到目标图像的变换,并解释了计算系数的方法。

Date: 2015-06-30 21:53

1. 基本数学描述

薄板样条(Thin Plate Spline)映射根据两幅相关图像中的对应控制点集来决定一个变形函数。它寻找通过所有给定点的饶度最小的光滑曲面。“薄板”这个名字的由来,就表示薄板样条是用来近似的仿真一块金属薄片在通过相同的控制点时的行为特征。

0818b9ca8b590ca3270a3433284dd417.png

上图是使用薄板样条进行变换的例子,薄板样条插值可表示为多变量插值问题,对于d维空间中提取出的n个特征点对xi和yi,问题描述为在一个合适的Hilbert空间H上寻找连续变换f:Rd→Rd,并满足如下两个条件:

(1)使得既定泛函E(f):H→R最小化;

(2)满足插值条件(通过指定的几个点)。

(这里有一系列的数学推导,一维如何计算,二维如何计算,三维如何计算,四维如何计算,暂时代过 … …)

2. 二维图像配准中的应用

以二维图像配准为例,在2维2阶导数情况下,则f(x,y)在满足插值方程的同时使得能量函数达到最小,即有:

f=argminfEfE(f)=∫∫⎛⎝(∂2f∂x2)2+2(∂2f∂x∂y)2+(∂2f∂y2)⎞⎠dxdy

此即为Bookstein于1989年首次将薄板样条应用于二维图像配准中时所采用的目标函数.使得能量函数取得最优解的

f(x,y)

的表达式为:

f(x,y)=a1+axx+ayy+∑i=1nwiU(∥(xi,yi)−(x,y)∥)

其中

U(r)=r2logr

为径向基函数。

wi,i=1,2,⋯,n

以及

a1,ax,ay

为未知系数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值