第29卷第2期佳木斯大学学报(自然科学版)Vo.l29N o.2 2011年03月Journa l of Jia m usiUn i v ersity(N atural Sc i e nce Ed ition)M ar.2011文章编号:1008-1402(2011)02-0238-03
样条插值的MATLAB实现1
樊天锁,芮兵
(第二炮兵工程学院,西安710025)
摘要:插值法是工程实践中最常用的函数逼近方法,其方法就是利用有限个数据点来实现对整个函数的拟合.本文介绍了插值法的概念,进而对样条插值的概念和条件进行了阐述.三次样条插值和B样条插值是最常用的两种样条插值方法.本文着重对这两种方法进行了数学分析并基于MATLAB工具箱对其进行仿真实现.
关键词:三次样条插值;B样条插值;MATLAB
中图分类号:O241.3文献标识码:A
0引言
插值法是实用的数值方法,是函数逼近的重要方法.在生产和科学实验中,自变量x与因变量y的函数y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值.当要求知道观测点之外的函数值时,需要估计函数值在该点的值.
如何根据观测点的值,构造一个比较简单的函数y=U(x),使函数在观测点的值等于已知的数值或导数值.用简单函数y=U(x)在点x处的值来估计未知函数y=f(x)在x点的值.寻找这样的函数U(x),办法是很多的.U(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;U(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数.函数类的不同,自然地有不同的逼近效果.在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据.
根据测量数据的准确性:
(1)测量值是准确的,没有误差.
(2)测量值与真实值有误差.
这时对应地有两种处理观测数据方法:
(1)插值或曲线拟合.
(2)回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)[1].
1样条插值

本文介绍了插值法的概念,重点讨论了三次样条插值和B样条插值,并在MATLAB环境下进行了实现。通过提供函数在特定点的值,构建插值函数以估计未知函数的值,特别是在数据测量有误差时,样条插值成为一种实用的数值方法。
最低0.47元/天 解锁文章
418

被折叠的 条评论
为什么被折叠?



