linux 信息学复赛,沙盘游戏(2017绍兴市第十五届少儿信息学竞赛复赛试题)

沙盘游戏

Ivy是如此地喜欢编程,以至于在面对游戏时也是如此。在沙盘游戏中有一个巨大的方形沙盘(长方形或者正方形),该沙盘被分隔成边长为1的小方格,每个小方格内有一个整数。沙盘玩家需要在沙盘中圈出一个方形(长方形或者正方形都可以)的区域(必须沿着小方格的边界划线,不能穿过小方格的内部),目标是争取被圈区域内的整数之和最大。

为了描述方便,Ivy把这个沙盘用n*m个整数来表示,每个整数所在位置表示沙盘中一个边长为1的小方格。

Ivy现在需要编程解决这样一个问题:在n*m(n行m列)个整数中选择一个x*y(x行y列)的方形区域(x最大可达n,y最大可达m),使得这x*y个整数之和是所有可以选择的方形区域中最大的,并输出这个最大总和值。

输入

第一行包含n和m二个整数,中间用一个空格分隔,分别表示原始方形区域中所包含的行数和列数。

下面有n行,每行m个整数(每个整数的范围是-200到200)组成的数据。

输出

一行一个整数,表示某个被圈出的方形区域中所有位置上整数之和,该值必须是所有可以圈出的方形区域所对应整数和中,总和最大的那个,该值确保不超过106 。

n,m<280;

样例输入

3 3

10 -21 9

7 8 4

-6 1 0

样例输出

19

(n*m)^2的复杂度肯定是不行的,这就需要优化一下了;

首先维护一个二维前缀和;然后遍历x坐标的所有区间(n^2)

然后遍历Y轴(m),每次维护一个大于零的底边;也就是说如果Y遍历的时候得到的子矩阵和小于零,更新底边,(下次的时候再加前面没意义了)

所以这样就优化到(n*n*m)的复杂度

代码呈上;

#include

#define maxn 1000005

using namespacestd;

typedeflong longll;using namespacestd;intmain()

{int s[300][300];int a[300][300];

memset(s,0,sizeof(s));intn,m;

scanf("%d%d",&n,&m);for(int i=1; i<=n; i++)

{for(int j=1; j<=m; j++)

{

scanf("%d",&a[i][j]);

s[i][j]+=a[i][j];

s[i][j]+=s[i-1][j];

s[i][j]+=s[i][j-1];

s[i][j]-=s[i-1][j-1];

}

}/*for(int i=1;i<=n;i++)

{

for(int j=1;j<=m;j++)

{

printf("%d ",s[i][j]);

}

printf("\n");

}*/

int maxx=-1e8;for(int i=1; i<=n; i++)

{for(int j=0; j

{int rec=0;for(int w=1; w<=m; w++)

{if(s[i][w]-s[j][w]-s[i][rec]+s[j][rec]>0)

{if(s[i][w]-s[j][w]-s[i][rec]+s[j][rec]>maxx)

{

maxx=s[i][w]-s[j][w]-s[i][rec]+s[j][rec];//printf("%d %d %d %d\n",i,j,w,rec);

}

}else{if(s[i][w]-s[j][w]-s[i][rec]+s[j][rec]>maxx)

{

maxx=s[i][w]-s[j][w]-s[i][rec]+s[j][rec];//printf("%d %d %d %d\n",i,j,w,rec);

}

rec=w;

}

}

}

}

printf("%d\n",maxx);return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值