研究,该系统通过建立图像数据采集与分析子系统和相关的农副产品图像数据库,实现对农副产品品质(表面颜色、形状、缺陷)的准确分级。中国农科院资源区划所吴文斌、杨桂霞,用极轨业务气象卫星(NOAA)图像监测冬小麦长势,并讨论了如何纠正因地球曲率等的影响造成图像几何畸变带来的误差。莱阳农学院纪寿文、王荣本,应用计算机图像处理技术识别玉米苗期田间杂草的研究,利用计算机图像处理技术分析了玉米苗田间杂草的特征量,识别出田间杂草并确定了杂草的位置和生长状况;研究采用双峰法滤除了土壤背景,根据投影面积、叶片、叶宽识别出了杂草,并且根据杂草投影面积确定出了杂草密度。王江枫、罗锡文,探讨了应用计算机视觉技术进行芒果质量及果面坏损检测的方法,分析了确定所需图像区域的算法,建立了芒果质量与其投影图像的相关关系,按质量和果面坏损分级准确率分别为76%、80%。何东健、杨青等,也进行了果实表面颜色计算机视觉分级技术研究等。胡少兴在吉林大学攻读博士学位期间,根据基于计算机视觉的排种器性能检测的特点,提出了基于神经网络的种子位置智能检测方法。中国农大李长缨、滕光辉等,利用VC++6.0编制的图像分析处理软件,提取植物的外部形态特征,包括叶冠投影面积和株高,实现了计算机视觉技术对温室黄瓜幼苗生长进行无损监测,对提高温室的智能化控制水平具有重要意义。山东农业大学丁元法、张晓辉,于2003年完成的“新型播种机综合试验台的研制”等,都是利用虚拟仪器结合图像处理技术,展开播种机排种性能检测方面的探索和应用。这些研究开拓了数字图像分析技术在农产品检测方面的应用,具有积极深远的意义。
5、结论