找出一批正整数中的最大偶数_正整数的性质 B6,C1

通过分析平面闭折线上顶点坐标的关系,证明了n为偶数的几何性质,结合奇偶数的性质解决了一系列数学问题,包括质数与合数的特性。
摘要由CSDN通过智能技术生成
点击上方“蓝字”,发现更多精彩。

奇数与偶数

21. 设有一条平面闭折线,它的所有顶点 A1A2…AnA1,它的所有顶点 Ai (i=1,2, …,n) 都是格点,

且 |A1A2|=|A2A3|=…=|An-1An|=|AnA1|.

求证: n 是偶数.

解: 设顶点 Ai 的坐标是 (xi,yi),其中 xi 及 y(i=1,2, …,n) 都是整数.

由题设有 (x1-x2)²+(y1-y2

=(x2-x3)²+(y2-y3

=…

=(xn-1-xn)²+(yn-1-yn

=(xn-x1)²+(yn-y1

=M,

其中 M 是固定整数.

令 α1=x1-x2,

α2=x2-x3,

…,

αn-1=xn-1-xn,

αn=xn-x1;

β1=y1-y2,

β2=y2-y3,

…,

βn-1=yn-1-yn,

βn=yn-y1,

则 α12+…+αn=0,①

β12+…+βn=0,②

α1²+β1²

2²+β2²

=…

n²+βn²

=M. ③

下面对 ①、② 作奇偶性分析.

不妨设 αi、βi (i=1,2,…,n) 中至少有一个是奇数.

否则,若 αi、βi 都是偶数,

可设 αi=2mitii=2kiti' (i=1,2,…,n),其中 ti、ti' 是奇数.

m 是 2n 个数:

m1,m2,…,mn,k1,k2,…,kn

中最小的数,用 2m 去除 αi、βi,那么 αi/2m、βi/2m 中至少有一个奇数.

为确定起见,设 αi 是奇数.

由 αi²+βi²=M,

则 M=4k+1

或 M=4k+2 (k 为整数).

若 M=4k+1,

由③知,所有的 αi、βi 必为一奇一偶.

再由①和②,

有 0=α12+…+αn12+…+βn

=偶数+n 个奇数之和 (n 为偶数).

若 M=4k+2,

则 αi 和 βi 必是奇数.

由①有

0=α12+…+αn

=n 个奇数之和 (n 是偶数).

综上讨论,可知 n 必为偶数.

质数与合数

1.设 p、q、r 都是质数,

并且 p+q=r,p

求 p.

解: 由于 p+q=r,

所以 r 不是最小的质数,从而 r 是奇数,所以 p、q 为一奇一偶.因为 p

2. 设 p (≥5) 是质数,并且 2p+1 也是质数.

求证:4p+1 是合数.

解: 由于 p 是大于 3 的质数,故 p 不会是 3k 的形式,从而 p 必定是 3k+1 或 3k+2 的形式,k 是正整数.

若 p=3k+1,

则 2p+1

=2(3k+1)+1

=3(2k+1) 是合数,与题设矛盾.

所以 p=3k+2,

这时 4p+1

=4(3k+2)+1

=3(4k+3) 是合数.

3. 设 n 是大于 1 的正整数,

求证:n4+4 是合数.

解: 我们只需把 n4+4 写成两个大于 1 的整数的乘积即可.

n4+4

=n4+4n²+4-4n²

=(n²+2)²-4n²

=(n²-2n+2)(n²+2n+2),

因为 n²+2n+2

>n²-2n+2

=(n-1)²+1>1,

所以 n4+4 是合数.

1fd14454d9f01221de09ca5dd3630c19.png4d004e7665f7c28592e33488490b3d04.png

adf7b4f0b43b6d9c684af08a3c17e40e.png三连一下,一起过冬天~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值