实变函数期末复习

本文详细介绍了实变函数中的可测函数概念,包括定义、性质以及可测函数的构造。讨论了连续函数、特征函数和简单函数的可测性,并证明了可测函数在几乎处处和几乎一致收敛下的性质。此外,概述了勒贝格积分的基础,如黎曼积分的条件、有界函数的勒贝格积分以及积分的极限定理等核心内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三章 可测函数

3.1 可测函数概念及其性质

3.1.1 可测函数概念

定义
给定可测集 E E E上的函数 f f f,若对于任意实数 λ \lambda λ,数集 { x ∈ R n ∣ x ∈ E , f ( x ) > λ } \{x\in R^n|x\in E,f(x)>\lambda\} { xRnxE,f(x)>λ}均为可测集,则称 f f f E E E上的可测函数,也称 f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值