第四章 插值与拟合
一、主要要求
编写拉格朗日插值法、分段线性插值法、*三次样条插值通用程序(Matlab 自带)。 拉格朗日插值多项式: 二、主要结果回顾
插值法是函数逼近的重要方法之一,有着广泛的应用 。在生产和实验中,函数f(x)或者其表达式复杂不便于计算或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数?(x ),使其近似的代替f (x ),这就是所谓的插值法.有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值.
1、插值:求近似函数的方法:由实验或测量的方法得到所求函数 y=f (x ) 在互异点x 0 , x 1, ... , x n 处的值 y 0 , y 1 , … , y n ,
构造一个简单函数 ?(x) 作为函数 y=f (x ) 的近似表达式 : y= f (x ) ≈ ?(x ) 使 ?(x 0)=y 0 , ?(x 1)=y 1 , ?, ?(x n)=y n , (*) 这类问题称为插值问题。 f(x) 称为被插值函数,?(x ) 称为插值函数, x 0 , x 1, ... , x n 称为插值节点。(*)式称为插值条件。
2、Lagrange 插值公式
∑∏
∑
=≠==+-+---=----------=n
j n j
i i j
i
j
i
j
n
j n j j j j j j j n j j n
y
x
x x y
x x x x x P
x x x x x x x 0
0011101110)()
)...()()...()(())...()()...()(()(
其中x 0 , x 1,... , x n 为插值节点,y j 为插值节点x j 处的函数值(j=1,2,…n )。
3、Lagrange 插值的截断误差(插值余项)
定理: 设Ln(x )是过点x 0 ,x 1 ,x 2 ,…x n 的 n 次插值多项式, f (n)(x)在[a ,b]上连续,f (n+1)(x)在[a ,b]上存在,其中[a ,b]是包含点x 0 ,x 1 ,x 2 ,…,x n 的任一区间,则对任意给定的x ∈[a ,b],总存在一点∈ξ(a ,b )(依赖于x )使
)
()!
1()
()()()(1)
1(x n x L x f x R n n n n f
+++=
-=ωξ
其中:))...()(()(101n n x x x x x x x ---=+ω。
4、拉格朗日插值法程序框图:(见图5)