67乘938用计算机算法过程,计算方法实验指导书

本文详细介绍了拉格朗日插值法和分段线性插值法,这两种是函数逼近的重要手段。拉格朗日插值公式通过互异点的函数值构建多项式,而分段线性插值则在每个子区间内使用线性函数。此外,还探讨了拉格朗日插值的截断误差和相关程序实现。这些方法在没有函数表达式或计算复杂时,提供了一种近似函数的方法。
摘要由CSDN通过智能技术生成

第四章 插值与拟合

一、主要要求

编写拉格朗日插值法、分段线性插值法、*三次样条插值通用程序(Matlab 自带)。 拉格朗日插值多项式: 二、主要结果回顾

插值法是函数逼近的重要方法之一,有着广泛的应用 。在生产和实验中,函数f(x)或者其表达式复杂不便于计算或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数?(x ),使其近似的代替f (x ),这就是所谓的插值法.有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值.

1、插值:求近似函数的方法:由实验或测量的方法得到所求函数 y=f (x ) 在互异点x 0 , x 1, ... , x n 处的值 y 0 , y 1 , … , y n ,

构造一个简单函数 ?(x) 作为函数 y=f (x ) 的近似表达式 : y= f (x ) ≈ ?(x ) 使 ?(x 0)=y 0 , ?(x 1)=y 1 , ?, ?(x n)=y n , (*) 这类问题称为插值问题。 f(x) 称为被插值函数,?(x ) 称为插值函数, x 0 , x 1, ... , x n 称为插值节点。(*)式称为插值条件。

2、Lagrange 插值公式

∑∏

=≠==+-+---=----------=n

j n j

i i j

i

j

i

j

n

j n j j j j j j j n j j n

y

x

x x y

x x x x x P

x x x x x x x 0

0011101110)()

)...()()...()(())...()()...()(()(

其中x 0 , x 1,... , x n 为插值节点,y j 为插值节点x j 处的函数值(j=1,2,…n )。

3、Lagrange 插值的截断误差(插值余项)

定理: 设Ln(x )是过点x 0 ,x 1 ,x 2 ,…x n 的 n 次插值多项式, f (n)(x)在[a ,b]上连续,f (n+1)(x)在[a ,b]上存在,其中[a ,b]是包含点x 0 ,x 1 ,x 2 ,…,x n 的任一区间,则对任意给定的x ∈[a ,b],总存在一点∈ξ(a ,b )(依赖于x )使

)

()!

1()

()()()(1)

1(x n x L x f x R n n n n f

+++=

-=ωξ

其中:))...()(()(101n n x x x x x x x ---=+ω。

4、拉格朗日插值法程序框图:(见图5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值