零基础学Python:Python从0到100最新最全教程
文章平均质量分 94
想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!
是Dream呀
CSDN、稀土掘金人工智能签约作者,985人工智能硕士、CSDN专家博主&人工智能领域优质创作者。一万次悲伤依然会有Dream,我一直在最温暖的地方等你!
精通撰文推广有任何需求我都可以帮助到您— —学习交流|商务合作|粉丝福利:https://bbs.csdn.net/topics/614347534
vx:18300396393
展开
-
机器学习实战——疫情数据分析与预测
机器学习如何做到疫情可视化——疫情数据分析与预测实战本文将带领大家爬取11个国家以及中国31个省(自治区、直辖市)在2022.0101-2022.06.19的新冠疫情数据。并且采用机器学习模型对2022.6.20-2022.6.30每一天的全国确诊人数、死亡人数、治愈人数进行预测,**做出疫情可视化图形并且求出最终的相关系数R2!...原创 2022-07-27 23:59:59 · 92297 阅读 · 140 评论 -
零基础学Python 开篇--第0节:全套学习路线
Python入门这些你必须要知道!PYTHONPython入门这些你必须要知道!Python方向简介及前言Python语言特点Python可以做什么Python之禅Python基础知识及应用语法基础:高级语法:Python中的Pygame模块:Python海龟画图综合应用最后的福利hello,大家好,我是Dream,今天给大家介绍一下Python和Python的一些基础知识及应用!先点赞收藏起来吧~!Python方向简介及前言Python是一种通用的解释,交互式,面向对象和高级编程语言。Pytho原创 2021-08-06 08:22:52 · 93598 阅读 · 84 评论 -
Python Web开发--Django框架:全套学习路线和知识总结
Python Web开发--Django框架:全套学习路线和知识总结原创 2022-08-10 22:19:17 · 73934 阅读 · 47 评论 -
Python从0到100(六十八):Python OpenCV-图像边缘检测及图像融合
以多个分辨率来表示图像的一种有效且概念简单的结构是图像金字塔。图像金字塔最初用于机器视觉和图像压缩,一个图像金字是一系列以金字塔形状排列的、分辨率逐步降低的图像集合。如图下图所示,它包括了四层图像,将这一层一层的图像比喻成金字塔。图像金字塔可以通过梯次向下采样获得,直到达到某个终止条件才停止采样,在向下采样中,层级越高,则图像越小,分辨率越低。向下取样 和 向上取样。如下图所示:向下取样:将图像从G0转换为G1、G2、G3,图像分辨率不断降低的过程;原创 2024-10-28 09:33:42 · 9561 阅读 · 0 评论 -
Python从0到100(六十七):Python OpenCV-图像阈值和模糊处理
平滑滤波是低频增强的空间域滤波技术。一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。原创 2024-10-22 16:23:14 · 13536 阅读 · 0 评论 -
Python从0到100(六十六):Python OpenCV-实战画图
opencv可以实现gui拥有的功能——所以,opencv中也包含了鼠标事件——通过点击等等事件,执行相应的回调函数,实现指定的功能,最终实现交互!我们这里用到event——事件参数,当然,你可以修改它的名字# 第一个参数为窗体名称——指的是哪个窗体下执行# 第二个参数为鼠标回调函数的名称——传入函数名称,指的是传入整个函数声明,而不是直接执行函数if event == cv.EVENT_LBUTTONDOWN: # 触发事件为左键按下时。原创 2024-10-22 16:23:03 · 13515 阅读 · 0 评论 -
事理图谱:概念与技术
知识图谱已在多个领域深耕多年,然而,现有的典型知识图谱主要以实体及其属性和关系为研究核心,缺乏对事理逻辑这一重要人类知识的刻画。为了弥补这一不足,事理图谱应运而生,它能够揭示事件的演化规律和发展逻辑,刻画和记录人类的行为活动。事理图谱是较为典型的多学科交叉领域,涉及知识工程、自然语言处理、机器学习、图数据库等多个领域。原创 2024-10-30 15:54:10 · 8103 阅读 · 0 评论 -
Python从0到100(六十五):Python OpenCV-图像运颜色转换及几何变换
OpenCV中有超过150种颜色空间转换方法。但是我们将研究只有两个最广泛使用的,BGR↔灰色和BGR↔HSV。对于颜色转换,我们使用cv函数。,其中flag决定转换的类型。对于BGR→灰度转换,我们使用标志cv.COLOR_BGR2GRAY。类似地,对于BGR→HSV,我们使用标志cv.COLOR_BGR2HSV。原创 2024-10-19 11:24:46 · 16418 阅读 · 0 评论 -
Python从0到100(六十四):Python OpenCV-图像运算进阶实战
这篇博客介绍了Python使用OpenCV进行图像处理的基础操作,包括读取图像、像素访问、ROI选择、通道拆分与合并、图像加边框等。此外,还详细探讨了图像加法、融合、按位运算等算术运算,以及如何在大小不一致的图像间进行融合。博主分享了实用的代码示例和技巧,适合Python和OpenCV初学者。原创 2024-10-16 19:39:08 · 19196 阅读 · 0 评论 -
Python从0到100(六十三):Python OpenCV-入门基础知识
OpenCV是计算机视觉中经典的专用库,其支持多语言、跨平台,功能强大。OpenCV-Python为OpenCV提供了Python接口,使得使用者在Python中能够调用C/C++,在保证易读性和运行效率的前提下,实现所需的功能。原创 2024-10-07 21:31:02 · 24069 阅读 · 0 评论 -
Python从0到100(六十二):机器学习实战-预测波士顿房价
如果不能对模型的训练和测试的表现进行量化地评估,我们就很难衡量模型的好坏。通常我们会定义一些衡量标准,这些标准可以通过对某些误差或者拟合程度的计算来得到。我们通过运算[决定系数]R2R^2R2来量化模型的表现。模型的决定系数是回归分析中十分常用的统计信息,经常被当作衡量模型预测能力好坏的标准。R2R^2R2的数值范围从0至1,表示目标变量的预测值和实际值之间的相关程度平方的百分比。一个模型的R2R^2R2值为0还不如直接用平均值来预测效果好;而一个R2R^2R2。原创 2024-10-07 11:35:29 · 23173 阅读 · 0 评论 -
Python从0到100(六十一):机器学习实战-实现客户细分
在最后一部分,研究可以对聚类数据采用的方式。思考特定的送货方案对不同的客户群(即客户细分)有何不同影响。以及思考为每个客户设定标签(该客户属于哪个细分)可以如何提供关于客户数据的额外特征。最后,比较客户细分和数据中的隐藏变量,看看聚类分析是否发现了特定的关系。我选择的聚类算法和聚类数量,与酒店/餐厅/咖啡厅客户和零售客户分布图相比,效果还不错,但也还存在一些异常数据。根据Dimension看到划分’零售客户’或者是’酒店/餐厅/咖啡厅客户’分布还不错。这些分类和之前的客户细分定义大体一致。原创 2024-09-30 18:33:09 · 31264 阅读 · 0 评论 -
Python从0到100(六十):机器学习-模型选择与交叉验证
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。交叉验证是评估机器学习模型性能的重要手段,它通过多次训练和验证来提高模型评估的准确性和可靠性。结合网格搜索,可以有效地进行超参数调优,从而获得更好的模型性能。在实际应用中,应根据数据特性和需求选择合适的交叉验证方法和参数。原创 2024-09-30 18:32:53 · 30915 阅读 · 0 评论 -
Python从0到100(五十九):机器学习-朴素贝叶斯分类及鸢尾花分类
朴素⻉叶斯(Naive Bayes)是⼀种基于⻉叶斯定理的概率统计分类算法,常⽤于⽂本分类和多类别分类问题。它的基本原理是。该算法通过计算给定类别的特征条件概率来进⾏分类。原创 2024-09-24 09:19:15 · 36051 阅读 · 0 评论 -
Python从0到100(五十八):机器学习-随机森林及对复杂数据集分类
随机森林通过构建多个决策树来完成分类或回归任务。随机森林的核⼼思想是通过多个弱学习器(决策树)的集成来构建⼀个强学习器,从⽽提⾼模型的泛化能⼒和稳定性。原创 2024-09-24 09:19:02 · 35836 阅读 · 0 评论 -
Python从0到100(五十七):机器学习-主成分分析机
是⼀种常⽤的降维技术,⽤于将⾼维数据集投影到低维空间中,同时保留数据集的主要特征。PCA通过寻找数据中最重要的⽅向(主成分),并将数据投影到这些⽅向上来实现降维。原创 2024-09-02 21:56:52 · 47575 阅读 · 0 评论 -
Python从0到100(五十六):机器学习-K均值聚类鸢尾花数据集聚类
K均值聚类是⼀种常⽤的⽆监督学习算法,⽤。K均值聚类算法通过迭代优化来实现聚类,是⼀种简单⽽有效的聚类算法。原创 2024-08-27 11:10:05 · 55621 阅读 · 0 评论 -
Python从0到100(五十五):机器学习-支持向量机及手写数字进行分类
支持向量机(Support Vector Machine,SVM)是⼀种强⼤的监督学习算法,主要⽤于分类问题,但也可⽤于回归和异常检测。SVM的基本原理是在特征空间中找到⼀个最优的超平⾯,以最大化不同类别之间的间隔,从而使分类更加准确。原创 2024-08-27 11:09:54 · 55414 阅读 · 0 评论 -
Python从0到100(五十四):机器学习-K近邻算法及⼿写数字识别数据集分类
是⼀种常⽤的监督学习算法,主要⽤于分类和回归问题。KNN的基本原理是基于特征空间中样本点的距离来进⾏预测或分类。对于分类问题,KNN找到与待分类样本在特征空间中最近的K个训练样本,并基于它们的类别标签进⾏投票决策。对于回归问题,KNN找到最近的K个训练样本,并计算它们的平均值或加权平均值来预测待预测样本的数值输出。原创 2024-08-21 14:30:53 · 56759 阅读 · 0 评论 -
Python从0到100(五十三):机器学习-决策树及决策树分类器
决策树是⼀种常⽤的监督学习算法,⽤于解决分类和回归问题。它的基本原理是根据数据的特征来构建⼀颗树状结构,决策树的⽬标是通过分裂特征,将数据集划分为纯度更⾼的⼦集,以最⼩化误差或不纯度。原创 2024-08-21 14:30:34 · 56758 阅读 · 0 评论 -
Python从0到100(五十二):机器学习-逻辑回归及鸢尾花数据集预测
逻辑回归是⼀种⽤于解决⼆分类问题的监督学习算法,其基本原理是使⽤来建模因变量(输出)与⾃变量(输⼊)之间的概率关系。逻辑回归的⽬标是估计某个事件发⽣的概率,通常表示为0或1,例如肿瘤是恶性(1)或良性(0)。原创 2024-08-18 00:56:07 · 63832 阅读 · 0 评论 -
Python从0到100(五十一):机器学习-线性回归及加州房价预测
线性回归是⼀种⽤于建⽴输⼊。它是机器学习和统计学中最简单、最常⻅的回归⽅法之⼀。线性回归假设特征与⽬标之间存在线性关系,并试图找到⼀条最佳拟合的直线(或超平⾯)来描述数据之间的关系。在机器学习领域中的大多数任务通常都与预测(prediction)有关。当我们想预测一个数值时,就会涉及到回归问题。常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等), 但不是所有的预测都是回归问题。原创 2024-08-18 00:55:56 · 63588 阅读 · 0 评论 -
Python从0到100(五十):深入理解Django ORM与事务处理
前面我们学过 一对多,一对一,多对多,都是通过外键来实现。接下来,我们通过一个实例演示,Django ORM 如何 操作 外键关联关系。首先,我们需要在models.pyCountry和Student。这两个模型通过外键关联,形成一个一对多的关系。原创 2024-08-05 09:35:42 · 73028 阅读 · 0 评论 -
Python从0到100(四十九):数据库设计及Django ORM使用
在本文中,我们详细讲解了关系型数据库的基本概念,并通过Django ORM展示了如何在实际项目中设计和实现数据库模型。通过代码示例,我们展示了如何处理药品管理的增删改查操作。希望这些内容能帮助你更好地理解和掌握数据库设计和Django ORM的使用。原创 2024-08-05 09:35:35 · 73271 阅读 · 0 评论 -
Python从0到100(四十八):前后端分离架构实践使用Django构建安全的Session验证系统
在Python Web开发中,合理使用Session和Token机制可以有效地保护我们的应用免受未授权访问。通过上述示例和最佳实践,我们可以构建一个既安全又高效的Web应用。原创 2024-07-29 11:39:23 · 75447 阅读 · 0 评论 -
Python从0到100(四十七):前后端分离架构实践
如果采用前后端分离的架构开发, 后端几乎不负责任何展现界面的工作,只负责对数据进行管理。响应前端的请求, 对数据资源的 增加、修改、删除、列出。在中,我们定义一个dispatcher函数,根据HTTP请求类型和请求体中的参数,将请求分发到不同的处理函数。# 将请求参数统一放入request 的 params 属性中,方便后续处理# GET请求 参数在url中,同过request 对象的 GET属性获取# POST/PUT/DELETE 请求 参数 从 request 对象的 body 属性中获取。原创 2024-07-29 11:39:08 · 75332 阅读 · 0 评论 -
Python从0到100(四十六):实现管理员登录及测试功能
在之前的开发过程中,我们已经实现了服务端管理员的一些基本操作,如增删改查。然而,管理员登录功能尚未实现。本文将详细介绍如何在Python Web应用中实现管理员登录功能。原创 2024-07-23 12:01:52 · 74900 阅读 · 2 评论 -
Python从0到100(四十五):从字符串到前后端分离
界面的构成全部在前端(浏览器前端或者手机前端)进行,称之为前端渲染。只是这个工作在前端执行, 使用前端的 框架库去完成,比如 Angular,React,Vue。现在随着 浏览器中javascript 解释器性能的突飞猛进,以及一些前端模板库和框架的流行。存储html模板, 然后 代码中生成html 里面需要插入的表格记录的内容,这个内容是html片段,也就是 html 表格的每行。对比 Python直接产生 HTML,大家可以发现,使用模板引擎的好处,就是。上面只是一种模板用法的简单演示。原创 2024-07-23 12:01:40 · 74898 阅读 · 0 评论 -
Python从0到100(四十四):读取数据库数据
HTTP 的 Get 请求url里面的参数(术语叫 querystring 里面的参数), 可以通过HttpRequest对象的 GET 属性获取。这是一个类似dict的对象。Customer.objects.values() 就会返回一个 QuerySet 对象,这个对象是Django 定义的,在这里它包含所有的Customer 表记录。Django 框架在 url 路由匹配到函数后, 调用函数时,会传入 一个 HttpRequest 对象给参数变量 request,该对象里面 包含了请求的数据信息。原创 2024-07-22 17:38:04 · 7788 阅读 · 2 评论 -
Python从0到100(四十三):数据库与Django ORM 精讲
Django 里面, 数据库表的操作,包括 表的定义、表中数据的增删改查,都可以通过 Model 类型的对象进行的。通常,在Django中:定义一张数据库的表 就是定义一个继承自 django.db.models.Model 的类定义该表中的字段(列), 就是定义该类里面的一些属性类的方法就是对该表中数据的处理方法,包括 数据的增删改查在Django中,定义数据模型非常简单。我们只需要在models.py文件中创建继承自Model的类,并定义相应的字段即可。原创 2024-07-22 17:37:51 · 75087 阅读 · 0 评论 -
Python从0到100(四十二):构建公司销售管理系统
Django 中的一个app 就是项目里面的一个应用的意思。一个项目包含多个app。一个app 通常就是一个相对独立的模块 ,实现相对独立的功能。比如,我们可以把 这个系统的 管理员管理的功能 做在一个名字为 mgr的app里面,把 销售人员的操作 实现在另外一个名字为 sales的app里面。一个app 本质上 就是一个 Python 包, 里面包含了一些应用相关的代码文件。当然,一个项目分成多少个app 这完全取决你的设计。原创 2024-07-19 19:02:25 · 74996 阅读 · 1 评论 -
Python从0到100(四十一):Django框架从入门到部署
Django 是一个强大的 Python Web 框架,用于快速开发安全且易于维护的网站。首先,确保你已经安装了 Python。当我们看到出现如下命令时。原创 2024-07-19 19:02:01 · 75636 阅读 · 1 评论 -
Python从0到100(四十):Web开发简介-从前端到后端(文末免费送书)
AI短视频生成与剪辑实战108招 : ChatGPT 剪映》通过12个专题内容、108个实用技巧、170多分钟的教学视频,讲解了AI短视频的生成与剪辑全流程,并随书附赠了108集同步教学视频、210多个素材效果、70多个书中案例关键词、5200多个绘画关键词等。具体内容按以下两条线展开。一是技能线:详细讲解了ChatGPT、文心一格、Midjourney的使用方法,以及3种AI短视频生成方法—文本生视频、图片生视频和视频生视频。原创 2024-07-15 19:48:15 · 81944 阅读 · 54 评论 -
Python从0到100(三十九):数据提取之正则(文末免费送书)
正则表达式是一种文本模式,包括普通字符(例如,字母和数字)以及特殊字符(称为“元字符”)。这些元字符没有文字意义,它们用来定义搜索模式,这个模式可以用来检查一个字符串是否符合我们定义的规则,或者从一个文本中提取出符合规则的子串。原始字符串(raw string)通过在字符串前加上r或R来定义,表示字符串中的反斜杠不应该作为转义字符。原创 2024-07-15 19:43:59 · 78178 阅读 · 67 评论 -
Python从0到100(三十八):json字符串的数据提取
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。JSONPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python,PHP 和 Java。原创 2024-07-15 19:39:30 · 75492 阅读 · 0 评论 -
Python从0到100(三十七):数据提取的概念和数据分类
想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!原创 2024-07-15 19:39:16 · 75331 阅读 · 0 评论 -
Python从0到100(三十六):字符和字符集基础知识及其在Python中的应用
字符(Character)是构成书面语言的基本元素,它包括但不限于各国家的文字、标点符号、图形符号和数字。字符集(Character set)则是一个包含多个字符的系统,用于统一管理和编码不同的字符。原创 2024-07-08 16:42:55 · 75855 阅读 · 0 评论 -
Python从0到100(三十五):beautifulsoup的学习
和 lxml 一样,Beautiful Soup 也是一个HTML/XML的解析器,主要的功能也是如何解析和提取 HTML/XML 数据。lxml 只会局部遍历,而Beautiful Soup 是基于HTML DOM的,会载入整个文档,解析整个DOM树,因此时间和内存开销都会大很多,所以性能要低于lxml。BeautifulSoup 用来解析 HTML 比较简单,API非常人性化,支持CSS选择器、Python标准库中的HTML解析器,也支持 lxml 的 XML解析器。原创 2024-07-08 16:42:42 · 75324 阅读 · 0 评论 -
Python从0到100(三十四):Python中的urllib模块使用指南
除了requests模块可以发送请求之外, urllib模块也可以实现请求的发送,只是操作方法略有不同!urllib在python中分为urllib和urllib2,在python3中为urllib下面以python3的urllib为例进行讲解传入URL地址。原创 2024-07-01 15:59:59 · 79689 阅读 · 22 评论 -
Python从0到100(三十三):xpath和lxml类库
XPath,全称为XML Path Language,是一种用于在XML文档中进行导航和数据提取的语言,可用来在 HTML\XML 文档中对元素和属性进行遍历。W3School官方文档:http://www.w3school.com.cn/xpath/index.asp。原创 2024-07-01 15:56:02 · 76816 阅读 · 41 评论