
零基础学Python:Python从0到100最新最全教程
文章平均质量分 95
全网受益近万人,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习工作和学业升学的先行者!
新专栏订阅前200名享有9.9元优惠,破200订阅上涨至19.9。订阅此专栏,免费进粉丝福利群,解答各种问题。
是Dream呀
CSDN、稀土掘金人工智能签约作者,985人工智能硕士、CSDN专家博主&人工智能领域优质创作者。一万次悲伤依然会有Dream,我一直在最温暖的地方等你!
精通撰文推广有任何需求我都可以帮助到您— —学习交流|商务合作|粉丝福利:https://bbs.csdn.net/topics/614347534
vx:18300396393
展开
-
机器学习实战——疫情数据分析与预测
机器学习如何做到疫情可视化——疫情数据分析与预测实战本文将带领大家爬取11个国家以及中国31个省(自治区、直辖市)在2022.0101-2022.06.19的新冠疫情数据。并且采用机器学习模型对2022.6.20-2022.6.30每一天的全国确诊人数、死亡人数、治愈人数进行预测,**做出疫情可视化图形并且求出最终的相关系数R2!...原创 2022-07-27 23:59:59 · 99877 阅读 · 140 评论 -
零基础学Python 开篇--第0节:全套学习路线
Python入门这些你必须要知道!PYTHONPython入门这些你必须要知道!Python方向简介及前言Python语言特点Python可以做什么Python之禅Python基础知识及应用语法基础:高级语法:Python中的Pygame模块:Python海龟画图综合应用最后的福利hello,大家好,我是Dream,今天给大家介绍一下Python和Python的一些基础知识及应用!先点赞收藏起来吧~!Python方向简介及前言Python是一种通用的解释,交互式,面向对象和高级编程语言。Pytho原创 2021-08-06 08:22:52 · 101306 阅读 · 84 评论 -
Python Web开发--Django框架:全套学习路线和知识总结
Python Web开发--Django框架:全套学习路线和知识总结原创 2022-08-10 22:19:17 · 81409 阅读 · 47 评论 -
Python从0到100最全学习路线必看导航(上半篇1-50):零基础到全栈开发指南
Python从0到100最全学习路线》系列文章上半篇以50篇系统性教程构建了完整的Python技术生态图谱。本文作为该系列的导航总结,将深度解析文章体系架构,揭示从到的完整成长路径,帮助开发者建立清晰的学习框架。(注:本文仅覆盖1-50篇内容分析)新专栏订阅前200名享有9.9元优惠,破200订阅上涨至19.9。订阅此专栏,免费进粉丝福利群,解答所有问题,领取各种专属福利!原创 2025-03-03 11:44:03 · 7279 阅读 · 0 评论 -
Python从0到100(八十九):Resnet、LSTM、Shufflenet、CNN四种网络分析及对比
残差网络(ResNet)通过引入“残差学习”的概念,解决了深度神经网络训练困难的问题。其核心思想是通过残差块(Residual Block)将输入直接与输出相加,从而缓解梯度消失问题,使得网络可以训练得更深。ResNet沿用了VGG完整的3 × 3卷积层设计。残差块里首先有2个有相同输出通道数的3 × 3卷积层。每个卷积层后接一个批量规范化层和ReLU激活函数。然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。残差块(Residual Block)原创 2025-02-25 10:21:19 · 15163 阅读 · 0 评论 -
Python从0到100(八十八):LSTM网络详细介绍及实战指南
华为自主研发的HarmonyOS(鸿蒙系统)是一款面向未来、面向全场景(移动办公、运动健康、社交通信、媒体娱乐等)的分布式操作系统。本书采用HarmonyOS最新版本作为基石,详细介绍如何基于HarmonyOS进行应用的开发,包括HarmonyOS架构、DevEco Studio、应用结构、Ability、安全管理、公共事件、通知、ArkTS、ArkUI、Stage模型、设备管理、数据管理、线程管理、视频、图像、网络管理等多个主题。本书辅以大量的实战案例,图文并茂,使读者易于理解和掌握。原创 2025-02-13 11:03:20 · 24205 阅读 · 0 评论 -
Python从0到100(八十七):CNN网络详细介绍及WISDM数据集模型仿真
WISDM数据集是一个用于人类活动识别(Human Activity Recognition, HAR)的公共数据集。数据集来源与构成WISDM数据集由福特汉姆大学计算机与信息科学系的Gary Weiss博士领导的团队创建。数据集包含了51名参与者进行的18种不同的活动,每种活动的数据都是通过佩戴在身体不同部位的智能手机和智能手表上的加速度计和陀螺仪以20Hz的频率收集得到的。数据集特点数据集中的活动包括但不限于走路、跑步、上下楼梯、坐、站等。原创 2025-02-03 13:42:18 · 24620 阅读 · 0 评论 -
Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
输入层:接收输入数据。深度可分离卷积层:减少参数数量和计算量。批量归一化层:提高训练效率和稳定性。ReLU激活函数:引入非线性。通道混合模块:增强通道间的信息流动。自适应平均池化层:适应不同尺寸的输入。全连接层:输出分类结果。这种结构设计使得 ShuffleNet 在保持高效性的同时,也具备了较强的特征提取能力。高效性:通过深度可分离卷积和通道混合技术,ShuffleNet 显著减少了参数数量和计算量,提高了模型的计算效率。灵活性:通过自适应平均池化。原创 2025-01-31 20:16:01 · 24144 阅读 · 23 评论 -
Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类
猫狗数据集包括25000张训练图片,12500张测试图片,包括猫和狗两种图片。在此次实验中为了训练方便,我们取了一个较小的数据集。数据解压之后会有两个文件夹,一个是“train”,一个是“test”,顾名思义一个是用来训练的,另一个是作为检验正确性的数据。在train文件夹里边是一些已经命名好的图像,有猫也有狗。而在test文件夹中是只有编号名的图像。原创 2025-01-22 17:48:51 · 12536 阅读 · 35 评论 -
Python从0到100(八十四):神经网络-卷积神经网络训练CIFAR-10数据集
CIFAR-10 数据集由 10 个类的60000 张 32x32彩色图像组成,每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为5个训练批次和1个测试批次,每个批次有10000张图像。测试批次正好包含从每个类中随机选择的 1000 张图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次正好包含来自每个类的 5000 张图像。32×32 RGB图像 ,数据集本身是 BGR 通道。原创 2025-01-16 10:55:32 · 11408 阅读 · 20 评论 -
Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
MNIST手写数字数据库具有60,000个示例的训练集和10,000个示例的测试集,MNIST的图像,每张图片是包含28 像素× 28 像素的灰度图像(1 通道),各个像素的取值在0 到255 之间。每张图片都由一个28 ×28 的矩阵表示,每张图片都由一个784 维的向量表示(28*28=784)。原创 2025-01-08 09:59:53 · 18331 阅读 · 21 评论 -
Python从0到100(八十二):神经网络-残差网络ResNet的深入介绍和实战
想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!ResNet是由Kaiming He等人在2015年提出的深度学习模型,它通过引入残差学习解决了随着网络深度增加而性能下降的问题。原创 2025-01-06 17:56:33 · 16001 阅读 · 26 评论 -
Python从0到100(八十一):神经网络-Fashion MNIST数据集取得最高的识别准确率
想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!今天来学习一下如何基于fashion mnist数据库获得最高的识别准确率,本文是从零开始的,如有需要可自行跳至所需内容~原创 2025-01-02 10:58:31 · 23509 阅读 · 0 评论 -
Python从0到100(八十):神经网络-MNIST数据集取得最高的识别准确率
今天来学习一下如何基于mnist数据集取得最高的识别准确率,本文是从零开始的,如有需要可自行跳至所需内容~说明:在此试验下,我们使用的是使用tf2.x版本,在jupyter环境下完成在本文中,我们将主要完成以下这个任务:基于mnist数据集,尽量取得更好的识别准确率。注意,要使用非训练集内容,通过evaluate方法得出准确率原创 2024-12-30 10:38:48 · 23732 阅读 · 13 评论 -
Python从0到100(七十九):神经网络-从0开始搭建过拟合和防过拟合模型
Fashion-MNIST数据集包含了10个类别的图像,分别是:t-shirt(T恤),trouser(牛仔裤),pullover(套衫),dress(裙子),coat(外套),sandal(凉鞋),shirt(衬衫),sneaker(运动鞋),bag(包),ankle boot(短靴)原创 2024-12-23 13:52:32 · 32516 阅读 · 18 评论 -
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
通过对比我们可以发现CNN卷积神经网络相对于传统神经网络NN准确率会高一些,由卷积的操作可知,输出图像中的任何一个单元,只跟输入图像的一部分有关系。而传统神经网络中,由于都是全连接,所以输出的任何一个单元,都要受输入的所有的单元的影响。这样无形中会对图像的识别效果大打折扣,因此。原创 2024-12-18 10:20:10 · 30843 阅读 · 15 评论 -
Python从0到100(七十七):计算机视觉-YOLOv5姿态估计实时检测人体关键点
本文主要是用于工程应用,没有涉及算法训练。Hrnet或是simdr都是先目标检测后姿态估计,yolov5就是获得人体边界框的。全文较长,主要都是些代码,在最后也给大家展示了照片、视频、摄像头的展示代码,同时也分享了自己的报错,还是一次非常有意义有收获的实践!同时因为本文采用的cpu,大家也可以用gpu去跑得到更高效的结果。过后我也会在此代码的基础上,训练新的模型进行动作识别,如果有新的进展会及时分享给大家,欢迎大家一起操作起来,实践出真知!围白的尾巴大佬提供的代码和思路,本文也是在此基础上的完善和实践。原创 2024-12-12 13:07:11 · 43058 阅读 · 13 评论 -
Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
直方图均衡化(Histogram Equalization)和自适应直方图均衡化(Adaptive Histogram Equalization)都是用于图像增强的技术,目的是改善图像的对比度和视觉效果。它们的主要区别在于处理图像的方式和局部性。直方图均衡化是一种全局的方法,它基于整个图像的灰度直方图来调整像素的灰度值分布。通过使灰度级别在图像中更均匀地分布,直方图均衡化可以增强图像的对比度和细节。它使用累积分布函数将原始图像中的灰度级别映射到一个新的灰度范围,从而实现图像的均衡化。原创 2024-12-05 15:20:39 · 40129 阅读 · 40 评论 -
Python从0到100(七十五):计算机视觉-利用HSV和YIQ颜色空间处理图像噪声
在本文中,我们使用RGB转HSV和YIQ的操作,通过加入椒盐噪声并将其转换回RGB格式,对图像进行了噪声处理。我们展示了原始RGB图像以及其R、G、B通道的显示,接着将图像转换为HSV和YIQ格式,并在H通道和Y通道中分别加入了椒盐噪声。然后,我们将加入了噪声的H、S、V通道以及Y通道进行了显示。最后,我们展示了加入椒盐噪声的HSV和YIQ格式图像,并将它们转换回RGB格式进行显示。通过这样的操作,我们可以进一步了解颜色空间转换在图像处理中的应用,以及如何通过加入噪声来模拟图像中的实际场景。原创 2024-12-03 15:12:27 · 49434 阅读 · 33 评论 -
Python从0到100(七十四):计算机视觉-距离变换算法的实战应用(文末送书)
随机生成 0/1 像素值的图片,大小为 8*8,0 为背景像素,1 为前景像素print('原始图片:\n', image)print('选取前景像素后的图片:\n', image)距离度量在计算机视觉CV领域有着广泛的应用。如图像分割、图像配准、目标检测和目标跟踪等任务中,都需要计算像素之间的距离来对图像进行处理和分析。而距离变换则可以帮助我们更好地理解像素之间的关系和结构,并为后续的图像处理工作提供基础和参考。原创 2024-11-26 13:08:58 · 59082 阅读 · 49 评论 -
Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
导入OpenCV库。通过OpenCV读取摄像头的视频流。使用肤色检测算法(如色彩空间转换和阈值分割)来识别手部区域。对手部区域进行轮廓检测,找到手的轮廓。根据手的轮廓,获取手指关键点的像素坐标。对于拖拽手势,可以关注食指和中指的位置。计算食指和中指指尖之间的距离并判断是否满足条件触发拖拽动作。如果满足条件,可以使用勾股定理计算距离,并将矩形区域变色以示触发拖拽。根据手指的位置更新矩形的坐标,使矩形跟随手指运动。当手指放开时停止矩形的移动。原创 2024-11-19 13:30:57 · 66983 阅读 · 93 评论 -
Python从0到100(七十二):Python OpenCV-OpenCV实现手势音量控制(文末送书)
本次实验需要使用OpenCV和mediapipe库进行手势识别,并利用手势距离控制电脑音量。cv2:OpenCV库,用于读取摄像头视频流和图像处理。mediapipe:mediapipe库,用于手部关键点检测和手势识别。ctypes和comtypes:用于与操作系统的音频接口进行交互。pycaw:pycaw库,用于控制电脑音量。初始化mediapipe和音量控制模块,获取音量范围。打开摄像头,读取视频流。对每一帧图像进行处理:转换图像为RGB格式。原创 2024-11-14 09:08:28 · 64717 阅读 · 87 评论 -
Python从0到100(七十一):Python OpenCV-OpenCV进行红绿灯识别
红绿灯分为导向灯和圆形灯。一般圆形灯在路口只有一盏灯,红灯亮时禁止直行和左转,可以右转弯。导向灯市带有箭头的,可以有两个或三个,分别指示不同方向的行车和停车。按指示的灯即可,没有右转向导向灯的情况下可以视为可以右转。RGB颜色空间以R(Red:红)、G(Green:绿色)、 B(Blue:蓝)三种基本色为基础,进行不同程度的叠加,产生丰富而广泛的颜色,所以俗称三基色模式。原创 2024-11-11 16:36:42 · 64292 阅读 · 37 评论 -
Python从0到100(七十):Python OpenCV-Opencv实现人像迁移
利用Python和Opencv算法,实现下述功能:撰写实验报告,将上述处理的原理与处理流程进行介绍;保存上述每一步的结果图像,并附加在实验报告中;最终对处理结果进行分析,并附加程序。解释器:Python3.9、开发环境:PyCharm老人照片(上)、风景照片(下)图像增强使用自适应直方图均衡化操作。因为原始图像为彩色图像,直接使用直方图均衡化操作后会使颜色失真,故先将原始图像转化到空间,对其中I通道(亮度)进行直方图均衡化,再转回RGB空间,这就实现了彩色图像的直方图均衡化,图像的亮度直方图会分布的更加原创 2024-11-05 09:43:28 · 64702 阅读 · 7 评论 -
Python从0到100(六十九):Python OpenCV-图像加噪与滤波
编写一Python程序,要求实现以下功能:读入一幅图像。使用两种以上的方法分别向图像中添加噪声。输出一幅二值图像,图像中未加入噪声的区域为黑色,加入噪声的区域为白色。使用三种滤波方法对上述添加了噪声的图像进行滤波处理。输出滤波处理后的图像。原创 2024-11-04 14:53:41 · 12599 阅读 · 17 评论 -
Python从0到100(六十八):Python OpenCV-图像边缘检测及图像融合
以多个分辨率来表示图像的一种有效且概念简单的结构是图像金字塔。图像金字塔最初用于机器视觉和图像压缩,一个图像金字是一系列以金字塔形状排列的、分辨率逐步降低的图像集合。如图下图所示,它包括了四层图像,将这一层一层的图像比喻成金字塔。图像金字塔可以通过梯次向下采样获得,直到达到某个终止条件才停止采样,在向下采样中,层级越高,则图像越小,分辨率越低。向下取样 和 向上取样。如下图所示:向下取样:将图像从G0转换为G1、G2、G3,图像分辨率不断降低的过程;原创 2024-10-28 09:33:42 · 16518 阅读 · 0 评论 -
Python从0到100(六十七):Python OpenCV-图像阈值和模糊处理
平滑滤波是低频增强的空间域滤波技术。一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。原创 2024-10-22 16:23:14 · 20558 阅读 · 0 评论 -
Python从0到100(六十六):Python OpenCV-实战画图
opencv可以实现gui拥有的功能——所以,opencv中也包含了鼠标事件——通过点击等等事件,执行相应的回调函数,实现指定的功能,最终实现交互!我们这里用到event——事件参数,当然,你可以修改它的名字# 第一个参数为窗体名称——指的是哪个窗体下执行# 第二个参数为鼠标回调函数的名称——传入函数名称,指的是传入整个函数声明,而不是直接执行函数if event == cv.EVENT_LBUTTONDOWN: # 触发事件为左键按下时。原创 2024-10-22 16:23:03 · 20501 阅读 · 0 评论 -
Python从0到100(六十五):Python OpenCV-图像运颜色转换及几何变换
OpenCV中有超过150种颜色空间转换方法。但是我们将研究只有两个最广泛使用的,BGR↔灰色和BGR↔HSV。对于颜色转换,我们使用cv函数。,其中flag决定转换的类型。对于BGR→灰度转换,我们使用标志cv.COLOR_BGR2GRAY。类似地,对于BGR→HSV,我们使用标志cv.COLOR_BGR2HSV。原创 2024-10-19 11:24:46 · 23344 阅读 · 0 评论 -
Python从0到100(六十四):Python OpenCV-图像运算进阶实战
这篇博客介绍了Python使用OpenCV进行图像处理的基础操作,包括读取图像、像素访问、ROI选择、通道拆分与合并、图像加边框等。此外,还详细探讨了图像加法、融合、按位运算等算术运算,以及如何在大小不一致的图像间进行融合。博主分享了实用的代码示例和技巧,适合Python和OpenCV初学者。原创 2024-10-16 19:39:08 · 26155 阅读 · 0 评论 -
Python从0到100(六十三):Python OpenCV-入门基础知识
OpenCV是计算机视觉中经典的专用库,其支持多语言、跨平台,功能强大。OpenCV-Python为OpenCV提供了Python接口,使得使用者在Python中能够调用C/C++,在保证易读性和运行效率的前提下,实现所需的功能。原创 2024-10-07 21:31:02 · 31057 阅读 · 0 评论 -
Python从0到100(六十二):机器学习实战-预测波士顿房价
如果不能对模型的训练和测试的表现进行量化地评估,我们就很难衡量模型的好坏。通常我们会定义一些衡量标准,这些标准可以通过对某些误差或者拟合程度的计算来得到。我们通过运算[决定系数]R2R^2R2来量化模型的表现。模型的决定系数是回归分析中十分常用的统计信息,经常被当作衡量模型预测能力好坏的标准。R2R^2R2的数值范围从0至1,表示目标变量的预测值和实际值之间的相关程度平方的百分比。一个模型的R2R^2R2值为0还不如直接用平均值来预测效果好;而一个R2R^2R2。原创 2024-10-07 11:35:29 · 30103 阅读 · 0 评论 -
Python从0到100(六十一):机器学习实战-实现客户细分
在最后一部分,研究可以对聚类数据采用的方式。思考特定的送货方案对不同的客户群(即客户细分)有何不同影响。以及思考为每个客户设定标签(该客户属于哪个细分)可以如何提供关于客户数据的额外特征。最后,比较客户细分和数据中的隐藏变量,看看聚类分析是否发现了特定的关系。我选择的聚类算法和聚类数量,与酒店/餐厅/咖啡厅客户和零售客户分布图相比,效果还不错,但也还存在一些异常数据。根据Dimension看到划分’零售客户’或者是’酒店/餐厅/咖啡厅客户’分布还不错。这些分类和之前的客户细分定义大体一致。原创 2024-09-30 18:33:09 · 38215 阅读 · 0 评论 -
Python从0到100(六十):机器学习-模型选择与交叉验证
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。交叉验证是评估机器学习模型性能的重要手段,它通过多次训练和验证来提高模型评估的准确性和可靠性。结合网格搜索,可以有效地进行超参数调优,从而获得更好的模型性能。在实际应用中,应根据数据特性和需求选择合适的交叉验证方法和参数。原创 2024-09-30 18:32:53 · 37858 阅读 · 0 评论 -
Python从0到100(五十九):机器学习-朴素贝叶斯分类及鸢尾花分类
朴素⻉叶斯(Naive Bayes)是⼀种基于⻉叶斯定理的概率统计分类算法,常⽤于⽂本分类和多类别分类问题。它的基本原理是。该算法通过计算给定类别的特征条件概率来进⾏分类。原创 2024-09-24 09:19:15 · 42988 阅读 · 0 评论 -
Python从0到100(五十八):机器学习-随机森林及对复杂数据集分类
随机森林通过构建多个决策树来完成分类或回归任务。随机森林的核⼼思想是通过多个弱学习器(决策树)的集成来构建⼀个强学习器,从⽽提⾼模型的泛化能⼒和稳定性。原创 2024-09-24 09:19:02 · 42755 阅读 · 0 评论 -
Python从0到100(五十七):机器学习-主成分分析机
是⼀种常⽤的降维技术,⽤于将⾼维数据集投影到低维空间中,同时保留数据集的主要特征。PCA通过寻找数据中最重要的⽅向(主成分),并将数据投影到这些⽅向上来实现降维。原创 2024-09-02 21:56:52 · 54480 阅读 · 0 评论 -
Python从0到100(五十六):机器学习-K均值聚类鸢尾花数据集聚类
K均值聚类是⼀种常⽤的⽆监督学习算法,⽤。K均值聚类算法通过迭代优化来实现聚类,是⼀种简单⽽有效的聚类算法。原创 2024-08-27 11:10:05 · 62594 阅读 · 0 评论 -
Python从0到100(五十五):机器学习-支持向量机及手写数字进行分类
支持向量机(Support Vector Machine,SVM)是⼀种强⼤的监督学习算法,主要⽤于分类问题,但也可⽤于回归和异常检测。SVM的基本原理是在特征空间中找到⼀个最优的超平⾯,以最大化不同类别之间的间隔,从而使分类更加准确。原创 2024-08-27 11:09:54 · 62345 阅读 · 0 评论 -
Python从0到100(五十四):机器学习-K近邻算法及⼿写数字识别数据集分类
是⼀种常⽤的监督学习算法,主要⽤于分类和回归问题。KNN的基本原理是基于特征空间中样本点的距离来进⾏预测或分类。对于分类问题,KNN找到与待分类样本在特征空间中最近的K个训练样本,并基于它们的类别标签进⾏投票决策。对于回归问题,KNN找到最近的K个训练样本,并计算它们的平均值或加权平均值来预测待预测样本的数值输出。原创 2024-08-21 14:30:53 · 63758 阅读 · 0 评论