吴恩达深度学习网课 通俗版笔记——(01.神经网络和深度学习)第三周 浅层神经网络

本文从神经网络的基本概念入手,对比逻辑回归,详细介绍双层神经网络的结构与计算过程。重点讲解了激活函数的选择与作用,包括sigmoid、tanh、ReLU及其导数。并通过向量化实现多个样本的高效计算,最后引入梯度下降法进行参数更新。
摘要由CSDN通过智能技术生成

神经网络和深度学习——浅层神经网路

这一部分开始正式步入神经网络学习,要稍微细致一些,基础细节理解越深入,后面学习越顺畅。


3.1 神经网络概览

该节主要对比神经网络和逻辑回归,给出神经网络的基本介绍以及个别符号表示。
在这里插入图片描述
圆括号上标表示单个样本,中括号上标表示神经网络的层数。
神经网络其实就是重复逻辑回归的计算过程。

3.2 神经网络表示

该节展示了一个双层神经网络(输入层算作0层,不计数),注意都用向量化形式表示,参数W和b维数由当前层单元数以及上一层单元数确定。
在这里插入图片描述

3.3 计算神经网络的输出

该节介绍了给定一个特征向量X,如何计算一个双层神经网络的输出。

在这里插入图片描述
对于隐藏层中每一个节点来说,就是做一次逻辑回归的变换。
在这里插入图片描述
这里看起来很复杂,其实主要注意两点:

  • 一是符号标记,右上标表示层数,右下标表示第几个单元。
  • 二是向量化的实现。

在这里插入图片描述
对于单个样本的情况,各参数维度:

  • W:当前层单元数 x 上一层单元数
  • b:当前层单元数 x 1
  • z:当前层单元数 x 1
  • a:保持与同层z一致

3.4 多个例子中的向量化

该节给出多个训练样本情况下的向量化,和上一节基本没区别,只是x变为X,由向量变成矩阵。
在这里插入图片描述

3.5 向量化实现的解释

该节直观地解释了对于多个样本的情况,向量化方法的正确性,本质上就是线性代数的相关运算规则,了解即可。
在这里插入图片描述

3.6 激活函数

该节介绍了几种常见的激活函数,并分析了利弊。在机器学习网课中,神经网络部分使用的是sigmoid函数,而现在几乎已经不再用,被tanh函数完美替代。

sigmoid函数和tanh函数都有一个缺点:z非常大或非常小时,函数斜率很小接近0,会拖慢梯度下降算法。
在这里插入图片描述
四种激活函数:

  • sigmoid函数:几乎不用,除非是用在二分类问题的输出层
  • tanh函数:sigmoid函数的替代品,根据实际情况选择
  • ReLU线性修正单元:目前最常用,尤其是隐藏层
  • 泄漏的ReLU线性修正单元:一般不用,根据实际情况选择

目前最普遍的是使用Relu线性修正单元,他能保证大部分z的情况都有一个不接近0的导数值,也能保证学习的速率。

3.7 为什么需要非线性激活函数?

因为如果隐藏层使用线性的或者不使用激活函数,那么神经网络实际上就变成了逻辑回归(输出层也不用则就是线性回归)

只有在回归问题下输出层才可能使用到线性激活函数,隐藏层几乎是不会使用的。

3.8 激活函数的导数

该节就是利用微积分知识对四种激活函数求导,比较基础。

sigmoid函数:
在这里插入图片描述
tanh函数:
在这里插入图片描述
ReLU函数:
在这里插入图片描述

3.9 神经网路的梯度下降法

该节给出了正向传播以及反向传播的计算公式,之前在机器学习网课中一直不明白为什么,这里结合一下上一周逻辑回归的内容就可以知道,其实反向传播这几个公式就是链式求导的过程。只要抓住链式求导,一步一步往前推,就能比较好理解,比较复杂的还是在于向量化过程。
在这里插入图片描述

3.10 (选修)直观理解反向传播

该节给出反向传播公式的详细推导,正如上节所说,充分利用链式法则,结合矩阵运算定义,实现反向传播。
在这里插入图片描述
上图对应单个样本的情况,利用链式求导即可写出每一个偏导数,注意每个变量的维度,该转置的地方要转置。
在这里插入图片描述
上图对应m个样本的情况,向量化实现即可。

3.11 随机初始化

该节介绍了随机初始化,也就是在进行正向传播之前,要给W和b一个初始值,而这个W值不能为全0,如果是全0,那么整个的迭代每个隐藏单元都是一致的,没有意义。
在这里插入图片描述

  • W值初始化为一个比较小的随机数,便于激活函数使用
  • b值初始化为全0即可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值