- loose/dense specimen
三轴排水试验:给定围压,固定摩擦角(>30°),体变–轴向应变曲线。(注意松散试验的剪缩)
• Prepare a specimen for an axisymmetric drained triaxial test at a given confining pressure (sigma11 =sigma33 ) and fix the compaction friction angle to a value higher than 30°, plot the volumetric strain (epsilon11+epsilon22 +epsilon33) in terms of the axial stain epsilon 22 .
Notice the contractant volumetric behaviour (loose specimen)
三轴:摩擦角(<10°),体变–轴向应变曲线。(注意密实砂的剪缩)
• Now prepare a new specimen by setting the compaction friction angle to a value smaller than 10° , perform the triaxial test and plot the same curve as above.
Notice the dilatant volumetric behaviour (dense specimen)
偏应力-轴向应变曲线(松砂:连续增加到plateau,应变硬化;密实砂:增加到峰值,然后降低,应变软化)
• Plot for both specimens the deviatoric stress q=sigma 22 −sigma 33 in terms of the axial stain epsilon 22 .
Notice that for the loose specimen the deviatoric stress continuously increases (positive hardening regime) toward a limit plateau and that for the dense specimen the deviatotic stress increases to reach a pick and then decreases ( softening regime)
• For the next simulations choose one of the two specimens. For the specimen you have chosen, pick out the values of q p corresponding to the pick or to the plateau of deviatoric stress curve.
- Stress state/ anisotropy (distribution of contacts orientations)
In the following, interest will be focused on the positive hardening regime (before the pic or the limit plateau).
• let’s consider two different stress states, an isotropic one defined by q i =0 and a deviatoric stress state defined by q d ~0.6 q p . Compute the axial stress d 22 corresponding to
d
q
• Now perform stress controlled drained triaxial compression to reach the deviatoric stress
state by setting ‘triax.sigma2’ to the value of d 22 and save the resulting anisotropic states.
It will be used as initial state from where stress probes will be applied (see further)
• Plot (rose plot) the distributions of contact orientations (projected on the planes x 1, x 2
and x 3, x 1 )
For this, all contact normals should be considered and projected on the planes defined above
and then sorted according to their angle of orientation.
Notice that the anisotropy becomes more marqued as the stress state gets nearer the pick or
plateau - Directional Analysis/Stress probes
The stress states defined by q i and q d are considered as initial states for directional
analysis.
An identical loading increment dσ is applied in each direction corresponding to the angle α
defined in the Rendulic plane of the stress increment (see figure below).
Varying α from 0° to 360°, each stress direction is inspected and for each loading increment
dσ, a response vector dε is associated. dε is defined in the Rendulic plane of strain
increments by its norm and its angle β (see figure below).
A stress probe is performed in three steps: first stabilizing the specimen at a given stress
state (already done for states at q i and q d ), then performing the stress probes in
different directions. For this one needs to set
•
•
•
•
•
•
The norm of the stress increment ‘dSnorm’
The number of stress directions to be tested ‘nbProbes’ (choose for example to
perform a stress probe each 30°)
The number of iterations ‘rampIte’ to increase the stress state until the final desired
stress value
Finally the number of iterations ‘stabIte’ to stabilize the specimen after each stress
probe direction.
Perform stress probes for each stress state already prepared.
Plot the response envelops (increment of axial strain d 22 in terms of increment of lateral
strain 2 d 33 ) corresponding to each directional analysis.
Notice that for the isotropic state, the response envelop corresponds to an ellipse centered to
the origin of the frame (linear elasticity) and for the deviatoric state, the ellipse streches out
(not an ellipse any more) - Existence of a flow rule
Starting from the deviatoric state corresponding to q d , perform the same stress probes by
setting the contact friction angle close to 90°, let’s say (89.999°).
By doing this, the strain response to the stress probes is purely elastic, and this can be
checked by plotting the response envelop which should be in this case an ellipse centered to
the origin of the frame (as for the isotropic state).
•
•
•
Compare the orientations of the two ellipses corresponding to the elastic responses of both
isotropic and deviatoric states.
Notice the change of the orientations of the ellipses, due to the change of the fabric of the
specimen from isotropic to anisotropic one.
Compared to the previous strain responses (total response) at the same stress state, plastic
response can be determined by computing the difference between the total and elastic strain
response increments in all directions.
Plot the plastic response corresponding to the deviatoric stress state.
Notice that the plastic response envelop is a line which indicates the existence of a flow rule
引用块内容
Matplotlib
一 简介:
二 相关文档:
三 入门与进阶案例
1- 简单图形绘制
2- figure的简单使用
3- 设置坐标轴
4- 设置legend图例
5- 添加注解和绘制点以及在图形上绘制线或点
6- 绘制散点图
7- 绘制柱状图
8- 绘制登高线图
9- 绘制Image
10- 绘制3D图形
11- subplot绘制多图
12- figure绘制多图
13- figure图的嵌套
14- 主次坐标轴
15- 创建动画
Matplotlib
一 简介:
Matplotlib是一个Python 2D绘图库,它可以在各种平台上以各种硬拷贝格式和交互式环境生成出具有出版品质的图形。 Matplotlib可用于Python脚本,Python和IPython shell,Jupyter笔记本,Web应用程序服务器和四个图形用户界面工具包
Matplotlib试图让简单的事情变得更简单,让无法实现的事情变得可能实现。 只需几行代码即可生成绘图,直方图,功率谱,条形图,错误图,散点图等。 有关示例,请参阅示例图和缩略图库。
为了简单绘图,pyplot模块提供了类似于MATLAB的界面,特别是与IPython结合使用时。 对于高级用户,您可以通过面向对象的界面或MATLAB用户熟悉的一组函数完全控制线条样式,字体属性,轴属性等。
二 相关文档:
官网教程文档:https://matplotlib.org/users/index.html
各个平台的安装教程:https://matplotlib.org/users/installing.html
三 入门与进阶案例
1- 简单图形绘制
根据坐标点绘制:
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1,2,3,4,5,6,7,8])
y = np.array([3,5,7,6,2,6,10,15])
plt.plot(x,y,’r’)# 折线 1 x 2 y 3 color
plt.plot(x,y,’g’,lw=10)# 4 line w
折线 饼状 柱状
x = np.array([1,2,3,4,5,6,7,8])
y = np.array([13,25,17,36,21,16,10,15])
plt.bar(x,y,0.2,alpha=1,color=’b’)# 5 color 4 透明度 3 0.9
plt.show()
1
2
3
4
5
6
7
8
9
10
11
根据坐标点绘制
传入参数是numpy数组时的效果:
import numpy as np
import matplotlib.pyplot as plt
for i in range(0,15):
# 1 柱状图
dateOne = np.zeros([2])
dateOne[0] = i;
dateOne[1] = i;
y = np.zeros([2])
y[0] = 10
y[1] = 20
plt.plot(dateOne,y,’r’,lw=8)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
传入参数是numpy数组时的效果
根据函数图像绘制:
-- coding: utf-8 --
“””
简单图形绘制
“”“
import matplotlib.pyplot as plt
import numpy as np
从-1—–1之间等间隔采66个数.也就是说所画出来的图形是66个点连接得来的
注意:如果点数过小的话会导致画出来二次函数图像不平滑
x = np.linspace(-1, 1,66)
绘制y=2x+1函数的图像
y = 2 * x + 1
plt.plot(x, y)
plt.show()
绘制x^2函数的图像
y = x**2
plt.plot(x, y)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
简单图形绘制