数组元素替换_88 合并两个有序数组

博客围绕将有序数组 nums2 合并到 nums1 使其成为有序数组的问题展开。介绍了两种双指针解法,顺序双指针需创建新数组,时间复杂度 O(m+n),空间复杂度 O(m);逆序双指针利用 nums1 空闲空间,时间复杂度 O(m+n),空间复杂度 O(1),还强调要考虑剔除冗余代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目信息

题目地址:https://leetcode-cn.com/problems/merge-sorted-array/

给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组。

说明:

初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。你可以假设 nums1 有足够的空间(空间大小大于或等于 m + n)来保存 nums2 中的元素。

示例:

输入:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6],       n = 3

输出:[1,2,2,3,5,6]

提示:

-10^9 <= nums1[i], nums2[i] <= 10^9
nums1.length == m + n
nums2.length == n

解法一:双指针(顺序)

很直接的就是双指针扫描,与上次我们在链表时写过合并有序链表同样的通过扫描与大小比较最终扫描完两个序列(m+n),前者是新建一个头节点然后遍历过程中慢慢连。这边也是可以创建一个数组,每扫描一个往里面设置值。e3ab19a6bbe516c181d3c8b92782c449.png看下题目可知实际的元素数量是m,n完整数组是可能有多余空间,并且num1的空闲可以容纳nums2的有效元素,就是说我们直接把nums1作为结果数组,新建的数组装num1的实际元素

有了思路之后理一下具体的过程:

0f04374ba6a76fc3f9f7445c79e30e63.gif

代码如下:

public void merge(int[] nums1, int m, int[] nums2, int n) {
    // 1.得到num1实际元素的数组
    int [] nums1_copy = new int[m];
    /*
    for(int i = 0; i         nums1_copy[i] = nums[i];
    }
    */
    System.arraycopy(nums1, 0, nums1_copy, 0, m);
    
    // 扫描两个素材数组的指针
    int p = 0;
    int q = 0;
    // 结果数组(num1)待设值位置的指针
    int cur = 0;

    // 2.挨个比较设值
    while ((p         nums1[cur++] = (nums1_copy[p]     }

    // 3.加入最后多余的一段
    if (p       System.arraycopy(nums1_copy, p, nums1, p + q, m + n - p - q);
    if (q       System.arraycopy(nums2, q, nums1, p + q, m + n - p - q);
}

时间上的话看三组操作m+min(m,n)+(m-n)或(n-m)因此为m+n,遍历了两组元素嘛O(m+n) 空间就是nums1_copy也就是O(m)b043df1103fdfafa62a0c4c96358bdc0.png

解法二:双指针(逆序)

解这题一开始我就在想是不是原地就可以(不用创建数组),但如果在解法一的过程中把num2的值设过去,那边就必须得存被替换的值。并且可能一直是num2小也是说那边还是需要一个中间数组。

也就是为了那一块的值创建了m大小的数组,为什么我们能拿num1为结果数组?不就是它有空闲的一块地方么,那么我们何必不用呢!反而另开一块呢!直接用后面的地方不就不存在替换了吗!

因此我们就用后面这块,直接倒序设值,整理过程如下:

情况一:最终前面小的一块在num1

f83dbc95f7bfb5d51368c01011e6004d.gif

情况一:最终前面小的一块在num2

708fbd7be131b4e39298286386deb085.gif

代码如下:

public void merge(int[] nums1, int m, int[] nums2, int n) {
    // 定义两个指针并指向元素末端
    int p = m - 1;
    int q = n - 1;
    // 注意初始化当前指针在整个元素m+n的末端并不是整个num1的末端
    int cur = m + n - 1;

    // 1.挨个比较设值
    while (p >= 0 && q >= 0){
        nums1[cur--] = (nums1[p]     } 
    // 2.可能nums2前面有余
    System.arraycopy(nums2, 0, nums1, 0, q + 1);
}

时间复杂度仍然是不可避免的O(m+n) 空间复杂度O(1)e17d64d398ac88ef3ca2cb4949974e9d.png

总结

这题还是比较简单的,主要是考虑到添加缓存与当前空间的问题。很多时候我们的中间变量或者中间数组是否真的该加。场上是否有不用的空间不用的变量,这是我们需要考虑的!剔除冗余无效代码

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值