基于特征的对抗迁移学习论文_[论文解读] 跨语言多层次对抗机制的知识迁移

该论文提出了一种跨语言多层次对抗训练框架,旨在增强低资源语言的命名实体识别任务。通过单词级和句子级的对抗学习,将源语言知识有效地迁移到目标语言,同时避免了现有方法引入的噪声问题。实验证明,这种方法在多个低资源语言上的表现优于先前的基线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

40092991cf3c19bd53213a89acc41403.png

Cross-lingual Multi-Level Adversarial Transfer to Enhance Low-Resource Name Tagging 论文笔记

原文 | Github

原文是 NAACL 2019 的长文,最近因工作需要略读了此文,并将文章中部分内容整理成笔记,有需要的朋友可以通过本文,快速了解原文的。

原文的任务是解决多语言中低资源语言的 Name Tagging 任务,文章认为现有的两大方法都会在传递知识时引入噪声。故此提出了一套多层次对抗训练的学习框架。一方面,在单词级别将源语言词汇和目标语言词汇映射到相同的语义空间中;另一方面,在句子级别训练语言无关的序列特征编码器。通过 Multi-Level 的对抗训练实现更加有效的知识迁移。

具体的实现流程本文不多作赘述,重点是其结合两种层次的对抗训练,设计合理并且有效提升了模型的效果,对相关工作大有裨益。


Abstract

We focus on improving name tagging for low-resource languages using annotations from related languages. Previous studies either directly project annotations from a source language to a target language using cross-lingual representations or use a shared encoder in a multitask network to transfer knowledge. These approaches inevitably introduce noise to the target language annotation due to mismatched source-target sentence structures. To effectively transfer the resources, we develop a new neural architecture that leverages multi-level adversarial transfer: (1) word-level adversarial training, which projects source language words into the same semantic space as those of the target language without using any parallel corpora or bilingual gazett
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值