泰勒公式矩阵形式_极限求解-泰勒公式理解

本文深入探讨泰勒公式的基本概念,强调其作为函数近似的强大工具。主要内容包括常见泰勒展开式、高阶无穷小计算规则以及确定展开项数的策略。通过对泰勒公式的应用实例,阐述了分式「上下同阶」和加减「幂次最低」原则。
摘要由CSDN通过智能技术生成

4fa8849c3ed9424605f489fc7a9d973f.png

0 序言

泰勒公式,本质上是一种函数的近似,强大之处就在于可以将不同类型的函数,统一用多项式求和的形式进行替换,从而变成多项式的运算。

本篇主要是标出常见的几个泰勒展开式、高阶无穷小的计算规则、泰勒公式使用时应该展开到第几项以及泰勒公式的应用。

1 常见的泰勒公式

5558c1e34be94096bfbb9137c0a2f7ca.png

【记忆】

一般情况下,考研只会考到某一基本函数展开式x的3到4次方,因为题目大多数都是有两个及以上基本函数相乘或者复合函数等来进行出题,这样的计算量可能就到5甚至6次方了,所以我们记忆时一般最多只需要记到4次方项就可以了。

我们可以看到,(1)~(4),都是奇函数,所以记住x只会有奇数次方,(1)和(2)、(3)和(4)的第2项系数相反,这样我们记住(1)(3)就容易可以想起(2)(4),(5)的cos是sin的导数,所以记住(1)亦可推出(5)。

【注】以上8个泰勒公式应该是考研里面最常考的了,其中,这里的x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值