牛顿插值的关键在于差商表的计算,差商表第一行是y值,为了配合计算,在该矩阵上方配上节点x0、x1、x2……xnf[x0,x1]=[f(x1)−f(x0)]/(x1−x0)f[x0,x1]=[f(x1)−f(x0)]/(x1−x0)
f[x0,x1,x2]=[f[x1,x2]−f[x0,x1]]/(x2−x0)f[x0,x1,x2]=[f[x1,x2]−f[x0,x1]]/(x2−x0)……
所以只要计算矩阵内上三角值即可。
#include
#include
int main()
{
float table(int n,float a1[10],float a2[10],float a3[10][10]);
float newton(int n,float a4[10][10],float a5[10]);
float arrX[10],arrY[10],arrL[10][10];
int num,i;
printf("请输入插值节点的个数(个数应小于10):");
scanf("%d",&num);
printf("请输入各个插值节点的值:\n");
for(i=0; i
{
printf("请输入X%d值:",i+1);
scanf("%f",&arrX[i]);
printf("请输入Y%d值:",i+1);
scanf("%f",&arrY[i]);
}
table(num,arrX,arrY,arrL);
newton(num,arrL,arrX);
return 0;
}
float table(int n,float a1[10],float a2[10],float a3[10][10])
{
int i,j;
for(i=0; i
{
a3[0][i]=a2[i];//第一行初始化为y值
}
for(i=0; i
for(j=n-1; j>i; j--)//从一行最后往前循环,到i=j为止,即上三角全部计算赋值
{
a3[i+1][j]=(a3[i][j]-a3[i][j-1])/(a1[j]-a1[j-1*(i+1)]);//差商表计算,最后一项arrX[j-1*(i+1)]脚标是计算步长
}
for(i=1; i
for(j=0; j
{
a3[i][j]=0.0;
}
printf("差商表为:\n");
printf("----------------------------------------------------------\n");
for(i=0; i
{
for(j=0; j
{
if(j%n==0)//num个数一行输出
printf("\n");
printf("%f\t",a3[i][j]);
}
}
printf("\n");
printf("----------------------------------------------------------\n");
return 0;
}
float newton(int n,float a4[10][10],float a5[10])
{
int i;
float x,y,t1=1.0;
while(1)
{
printf("请输入要插入节点的X值:");
scanf("%f",&x);
y=a4[0][0];
for(i=1; i
{
t1=t1*(x-a5[i-1]);
y=y+a4[i][i]*t1;//差商表对角线值依次乘以(x-x0)(x-x1)……
}
printf("插值结果为:%f",y);
printf("\n");
}
return 0;
}
运行结果如下: