ETL是什么?为什么要使用ETL?KETTLE是什么?为什么要学KETTLE?
ETL是数据的抽取清洗转换加载的过程,是数据进入数据仓库进行大数据分析的载入过程,目前流行的数据进入仓库的过程有两种形式,一种是进入数据库后再进行清洗和转换,另外一条路线是首先进行清洗转换再进入数据库,我们的ETL属于后者。
大数据的利器大家可能普遍说是hadoop,但是大家要知道如果我们不做预先的清洗和转换处理,我们进入hadoop后仅通过mapreduce进行数据清洗转换再进行分析,垃圾数据会导致我们的磁盘占用量会相当大,这样无形中提升了我们的硬件成本(硬盘大,内存小处理速度会很慢,内存大cpu性能低速度也会受影响),因此虽然hadoop理论上解决了烂机器拼起来解决大问题的问题,但是事实上如果我们有更好的节点速度必然是会普遍提升的,因此ETL在大数据环境下仍然是必不可少的数据交换工具。
市场上流行的ETL很多,比如informatica等,但是开源的比较完善的却不是很多,而其中比较有名的要说是pentaho开源的kettle了,该工具被广泛用,并且开源的产品我们从中不仅可以学到ETL的简单应用,并且可以学习到ETL的原理以及通过源码学到更多的东西。
亮点一:KETTLE应用广泛,仅仅学会使用就可以找到一份不错的工作。
亮点二:本课程不仅讲解简单实用,同时讲解二次开发并且配有开发模板,提升工作质量。
亮点三:渗透了大数据的一些处理方法,与目前流行的hadoop配合使用。
亮点四:分析KETTLE源码,即使对ETL兴趣不大,至少