kettle分批处理大表数据_数据层交换和高性能并发处理(开源ETL大数据治理工具--KETTLE使用及二次开发 )...

本课程深入讲解开源ETL工具Kettle的使用,涵盖ETL流程、Kettle核心组件、性能调优、二次开发等内容。通过实例演示,学习如何利用Kettle进行大表数据的分批处理,理解数据流引擎原理,掌握并发运算,以及如何将Kettle集成到大数据环境中,与Hadoop协同工作。课程还包括Kettle的源码分析,帮助学员提升工作质量和效率。
摘要由CSDN通过智能技术生成

ETL是什么?为什么要使用ETL?KETTLE是什么?为什么要学KETTLE?

ETL是数据的抽取清洗转换加载的过程,是数据进入数据仓库进行大数据分析的载入过程,目前流行的数据进入仓库的过程有两种形式,一种是进入数据库后再进行清洗和转换,另外一条路线是首先进行清洗转换再进入数据库,我们的ETL属于后者。

大数据的利器大家可能普遍说是hadoop,但是大家要知道如果我们不做预先的清洗和转换处理,我们进入hadoop后仅通过mapreduce进行数据清洗转换再进行分析,垃圾数据会导致我们的磁盘占用量会相当大,这样无形中提升了我们的硬件成本(硬盘大,内存小处理速度会很慢,内存大cpu性能低速度也会受影响),因此虽然hadoop理论上解决了烂机器拼起来解决大问题的问题,但是事实上如果我们有更好的节点速度必然是会普遍提升的,因此ETL在大数据环境下仍然是必不可少的数据交换工具。

市场上流行的ETL很多,比如informatica等,但是开源的比较完善的却不是很多,而其中比较有名的要说是pentaho开源的kettle了,该工具被广泛用,并且开源的产品我们从中不仅可以学到ETL的简单应用,并且可以学习到ETL的原理以及通过源码学到更多的东西。

亮点一:KETTLE应用广泛,仅仅学会使用就可以找到一份不错的工作。

亮点二:本课程不仅讲解简单实用,同时讲解二次开发并且配有开发模板,提升工作质量。

亮点三:渗透了大数据的一些处理方法,与目前流行的hadoop配合使用。

亮点四:分析KETTLE源码,即使对ETL兴趣不大,至少

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值