统计 表格_快速合并Excel表格中的同类项并分类统计数据的小方法

本文介绍了两种在Excel中快速合并同类项并进行数据统计的方法:一是使用SUMIF函数,通过删除重复项和应用函数进行统计;二是利用数据透视表,直观方便地进行数据分类和求和。两种方法都能有效提升数据处理效率。
摘要由CSDN通过智能技术生成

此文有点枯燥,如果不想将30分钟的工作拖到两三天的,请务必慢慢看完(看完后自己实操一遍)。好记性不如熟能生巧,次数多了,信手拈来!

3f3b5a6aa939a866bff04abf23ed2a19.png

本文为大家介绍下快速处理Excel中的数据处理小方法,旨在为大家节约工作成本!!本文有两种方法可以快速将表格中的同类项合并(不影响数据变化)并统计数据。看下图

f463958edda6c0a9d05363a174be9c4b.png

示例参考

如上图所见,表格中有很多重复项(备件代码、备件名、仓库名称),但是各项的数据是不一样的时候,如何快速将重复项合并并将相关数据统计?

一、函数法(用到的函数为sumif)

e5fa224b4af6a4ce2de71f0e5dcb7244.png

选择列A1--A21,复制

复制列之后将其粘贴到空白的列(这里小编用了J列)

4b8db2e95da866434d5bd77e61ba17be.png

选择J列,在“数据”项中找到“删除重复项”,如下图点击删除。

0456201b79bda2cf529e707d9f1f3e17.png

表格中重复项被删除后,这样就合并了同类项了,接下来需要统计数据。此处小编只是统计图中的数量一项。

6b443614cbf96bee9eb2a308e54c83d0.png

使用函数sumif:

57f05d345c6023795e4d9ea0e423f525.png

ps:A$1:A$21 指的是重复项选取的区域 J2 指的是合并后同类项所在的单

127477915e6aa1c62e400bd864cb095d.png

鼠标在统计好的第一个单元格右下角等光标变为“+”时往下来,可以复制函数了。

到这第一种方法结束,如果需要其他合并统计同理使用就行了。

二、数据透视表(此法更直观方便)

相较于第一种,小编跟喜欢数据透视图,因为这种方法后期处理更简便。

7982b54567462b4e76699576c1c8edaf.png

全选需要的区域,点击“数据”---“数据透视表”

55e1b386f6f81b826aa4276e88b3207a.png
a545a80479bdd86007cf314ead0406db.png

选择“新工作表”--“确定”

2749c61701d55166fa31bd9330d83d08.png

得到如上图所示的数据表,分为“行”和“值”。

ps:行---此部分的数据不会自动求和

值---此部分的数据会自动求和(也可以求其他需要的数据,请自行点开参考)

b0deba500a09327ef1609cc37dac50e7.png

小编勾选了“字段列表”的所有项,如上图所示多了很多重复的数据,看着不舒服,此时请往下看,选择功能“设计”--“分类汇总”---“不显示分类汇总”,结果如下图

77c81b90802269a9e067058e89e129a0.png

如果不需要最后一行总计,右键选择“数据透视表选项”,将“显示列总计”的勾选去掉。

1a92e45285fd5ead30253fb911abd04a.png

由于此处小编只需要统计“数量”这一部分,所以其他成本单价之类的数据保持不变,此时在右下角“数据透视表区域”中将“值”一项中的成本单价之类用鼠标拖动到“行”区域。效果如下图。

9ab08b210094a1ee5e7c42dc115070ca.png

此时合并同类并统计数据就完成了,透视数据表的方便之处在于随时可以查看想要的数据,只要在相对应的选项勾选就行了。

在Python合并Excel同类项通常涉及到使用数据处理库,比如pandas。pandas提供了强大的数据处理功能,可以方便地读取、处理和写入Excel文件。以下是使用pandas合并Excel同类项的基本步骤: 1. 安装并导入pandas库。如果还未安装pandas,可以使用pip命令安装:`pip install pandas`。然后在代码导入pandas库。 ```python import pandas as pd ``` 2. 使用pandas读取Excel文件。可以使用`read_excel`函数来加载Excel文件到DataFrame对象。 ```python df = pd.read_excel('example.xlsx') ``` 3. 对DataFrame进行处理,合并同类项。这通常涉及以下几种方法: - 如果是按照某一列的值进行合并,可以使用`groupby`和`agg`函数。 - 如果需要合并具有相同索引的行,可以使用`groupby(level=0)`。 - 如果合并的是字符串类型的值,可以使用`groupby`配合字符串操作函数。 以下是一个简单的例子,展示了如何按照某列的值进行合并: ```python # 假设我们要根据'Category'列合并数据,并对'Value'列进行求和 grouped = df.groupby('Category').agg({'Value': 'sum'}) ``` 4. 将处理后的数据写回到新的Excel文件。可以使用`to_excel`函数实现。 ```python grouped.to_excel('merged_example.xlsx') ``` 综合以上步骤,合并Excel同类项的基本代码框架如下: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('example.xlsx') # 根据需要合并的列进行分组并聚合 grouped = df.groupby('需要合并的列名').agg({'需要合并的值列名': '聚合函数'}) # 将合并后的结果输出到新的Excel文件 grouped.to_excel('合并结果.xlsx') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值