lca即两点到达的第一个公共节点
前两个方法取自:Cold_Chair,树剖方法取自:Frocean
目录
暴力往上跳
先把x,y跳到同一深度,然后同时往上跳,最后fa[x] == fa[y]即找到LCA。
时间复杂度与树的深度有关,则最坏情况就是一条链了。
int dep[maxn];
void dfs(int u){
for(int i=head[u]; ~i; i=edge[i].next){
int v = edge[i].to;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v);
}
}
int lca(int x, int y){
if(dep[x] > dep[y]) swap(x, y); //使y为深度较大的
while(dep[y] > dep[x]) y = fa[y];
while(x != y) x = fa[x], y = fa[y];
return x;
}
倍增算法
类同暴力,也是往上跳着找,只是倍增每次跳2的幂次,更快
预处理幂次:
- 边界
int dep[maxn];
void dfs(int u){
for(int i=head[u]; ~i; i=edge[i].next){
int v = edge[i].to;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v);
}
}
int f[maxn][maxn];
void build(int n){
dep[1] = 1;
dfs(1);
for(int i=1; i<=n; ++i)
f[i][0] = fa[i];
for(int j=1; (1<<j)<=n; ++j)
for(int i=1; i<=n; ++i)
if(f[i][j-1] != -1)
f[i][j-1] = f[f[i][j-1]][j-1];
}
int lca(int x, int y){
if(dep[x] > dep[y]) swap(x, y);
for(int i=20; i>=0; --i){
if(dep[f[y][i]] >= dep[x])
y = f[y][i];
}
for(int i=20; i>=0; --i){
if(f[x][i] != f[y][i])
x = f[x][i], y = f[y][i];
}
return f[x][0];
}
树剖法
通过重链往上跳,最后归于一条链,深度较小时即为结果。
int siz[maxn], dep[maxn], fa[maxn], top[maxn], son[maxn]; //子节点数,深度,父亲,重链头节点,重儿子
void dfs1(int u){
siz[u] = 1;
for(int i=head[u]; ~i; i=edge[i].next){
int v = edge[i].to;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v);
siz[u] += siz[v];
if(!son[u] || siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs2(int u){
if(son[u]){
top[son[u]] = top[u];
dfs(son[u]);
}
for(int i=head[u]; ~i; i=edge[i].next){
int v = edge[i].to;
if(v == son[v]) continue;
top[v] = v;
dfs(v);
}
}
int lca(int x, int y){
while(top[x] != top[y]){
if(dep[top[x]] > dep[top[y]]) swap(x, y); //y较深
y = fa[top[y]];
}
if(dep[x] > dep[y]) swap(x, y); //在一条链上,返回深度较小的一个
return x;
}
还有其他求lca方法,等需要时再补充。可查看Cold_Chair