摘要: 通过求解 (sinx)^2 + (cosx)^2 = 1 的若干写法,逐步展示了如何从过程式的写法转变到函数式的写法,并说明了编写“【接受函数参数】并返回【能够接受函数参数的函数】的【高阶函数】”的一点小技巧。
难度: 中级。
代码在此,先领会一下~~
package zzz.study.function.decrator;
import java.util.Arrays;
import java.util.List;
import java.util.function.BiFunction;
import java.util.function.Function;
import static java.lang.Math.*;
/**
* Created by shuqin on 17/6/29.
*/
public class FunctionImplementingDecrator {
public static void main(String[] args) {
// 求解 (sinx)^2 + (cosx)^2 = 1 的若干写法
double x= 30;
System.out.println(Math.pow(sin(x),2) + Math.pow(cos(x), 2));
System.out.println(pow(Math::sin, 2).apply(x) + pow(Math::cos, 2).apply(x));
double res = op(pow(Math::sin, 2).apply(x), pow(Math::cos, 2).apply(x)).apply((a,b) -> a+b);
System.out.println(res);
double res2 = op(pow(Math::sin, 2), pow(Math::cos, 2), x).apply((a,b) -> a+b);
System.out.println(res2);
Function sumSquare = op(pow(Math::sin, 2), pow(Math::cos, 2)).apply((a,b)->a+b);
System.out.println(sumSquare.apply(x));
Function another = op(compose((d)->d*d, Math::sin), compose((d)->d*d, Math::cos)).apply((a,b)->a+b);
System.out.println(another.apply(x));
Function third = compose(d->d*d, d->d+1, d->d*2, d->d*d*d); // (2x^3+1)^2
System.out.println(third.apply(3d));
}
/** 将指定函数的值封装幂次函数 pow(f, n) = (f(x))^n */
public static Function pow(final Function func, final int n) {
return x -> Math.pow(func.apply(x), (double)n);
}
/** 对给定的值 x,y 应用指定的二元操作函数 */
public static Function, T> op(T x, T y) {
return opFunc -> opFunc.apply(x, y);
}
/** 将两个函数使用组合成一个函数,这个函数接受一个二元操作函数(eg +, -, * , /) */
public static Function, T> op(Function funcx, Function funcy, T x) {
return opFunc -> opFunc.apply(funcx.apply(x), funcy.apply(x));
}
/** 将两个函数组合成一个叠加函数, compose(f,g) = f(g) */
public static Function compose(Function funcx, Function funcy) {
return x -> funcx.apply(funcy.apply(x));
}
/** 将若干个函数组合成一个叠加函数, compose(f1,f2,...fn) = f1(f2(...(fn))) */
public static Function compose(Function... extraFuncs) {
if (extraFuncs == null || extraFuncs.length == 0) {
return x->x;
}
return x -> Arrays.stream(extraFuncs).reduce(y->y, FunctionImplementingDecrator::compose).apply(x);
}
public static Function, Function> op(Function funcx, Function funcy) {
//return opFunc -> { return aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT)); };
return opFunc -> aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT));
/* Equivalent to
return new Function, Function>() {
@Override
public Function apply(
BiFunction opFunc) {
return new Function() {
@Override
public T apply(T aT) {
return opFunc.apply(funcx.apply(aT), funcy.apply(aT));
}
};
}
};*/
}
}
编写“【接受函数参数】并返回【能够接受函数参数的函数】的【高阶函数】”的一点小技巧:直接用 lambda 表达式的角度去思考,辅以数学推导。
比如要编写一个函数 F(G,H) , 接受两个一元函数参数 G(x) , H(x) ,返回一个函数: R(op) ,R(op) 接受一个二元操作函数 op(x,y),返回一个一元函数 T(x)。即:F(G(x), H(x)) = R(op)(x) = op(G, H)(x) = T(x) : x -> op(G(x), H(x))
看上去挺绕的!那么该怎么写呢?
先理一理: R(op)(x) = G(x) op H(x) = op(G, H)(x) 。由于 R(op) 是接受一个二元操作函数 opFunc, 那么应该有 opFunc -> opFunc(G, H) ; 完成了一半! 注意到,opFunc(G,H) 的结果应当是一个单元函数 T(x) ,opFunc(G,H) = x -> T(x) , T(x) = op(G(x), H(x)) ; 于是最终有 F(G(x), H(x)) = opFunc -> { x -> opFunc(G(x), H(x)) }
public static Function, Function> op(Function funcx, Function funcy) {
return opFunc -> { return aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT)); };
}
只要是赋值给函数接口,一定有 (x1,x2,...,xn) -> F(x1,x2,...,Xn) 形式。 然后无非是这种形式的组合及嵌套。 经过一通脑筋急转弯之后,似乎摸到了一点窍门。化简成 lambda 表达式的形式是(IDE会自动提示):
public static Function, Function> op(Function funcx, Function funcy) {
return opFunc -> aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT));
}
第一种形式更容易理解, 第二种形式比较简洁。显然, -> 符号是右结合优先的。
由此可见,函数式编程可以通过凝练的代码形式将函数能力组合起来,构建强大的抽象表达能力,对于消除重复代码及框架设计有很大的益处。同时,使用函数编程需要经常从“函数及组合的层面”去思考计算,而不是从通常的“求值层面”去思考计算。这无疑对抽象思维能力有更高的要求。
不是每个知识点都要正儿八经地写上一篇文章,多尝试摸索窍门反而是妙法 😃