java函数接口_Java函数接口实现函数组合及装饰器模式

本文通过解决 (sinx)^2 + (cosx)^2 = 1 的问题,展示了如何使用Java函数接口进行函数组合和装饰器模式。通过pow、op和compose等高阶函数的实现,探讨了函数式编程中消除重复代码和提高抽象能力的方法。
摘要由CSDN通过智能技术生成

摘要: 通过求解 (sinx)^2 + (cosx)^2 = 1 的若干写法,逐步展示了如何从过程式的写法转变到函数式的写法,并说明了编写“【接受函数参数】并返回【能够接受函数参数的函数】的【高阶函数】”的一点小技巧。

难度: 中级。

代码在此,先领会一下~~

package zzz.study.function.decrator;

import java.util.Arrays;

import java.util.List;

import java.util.function.BiFunction;

import java.util.function.Function;

import static java.lang.Math.*;

/**

* Created by shuqin on 17/6/29.

*/

public class FunctionImplementingDecrator {

public static void main(String[] args) {

// 求解 (sinx)^2 + (cosx)^2 = 1 的若干写法

double x= 30;

System.out.println(Math.pow(sin(x),2) + Math.pow(cos(x), 2));

System.out.println(pow(Math::sin, 2).apply(x) + pow(Math::cos, 2).apply(x));

double res = op(pow(Math::sin, 2).apply(x), pow(Math::cos, 2).apply(x)).apply((a,b) -> a+b);

System.out.println(res);

double res2 = op(pow(Math::sin, 2), pow(Math::cos, 2), x).apply((a,b) -> a+b);

System.out.println(res2);

Function sumSquare = op(pow(Math::sin, 2), pow(Math::cos, 2)).apply((a,b)->a+b);

System.out.println(sumSquare.apply(x));

Function another = op(compose((d)->d*d, Math::sin), compose((d)->d*d, Math::cos)).apply((a,b)->a+b);

System.out.println(another.apply(x));

Function third = compose(d->d*d, d->d+1, d->d*2, d->d*d*d); // (2x^3+1)^2

System.out.println(third.apply(3d));

}

/** 将指定函数的值封装幂次函数 pow(f, n) = (f(x))^n */

public static Function pow(final Function func, final int n) {

return x -> Math.pow(func.apply(x), (double)n);

}

/** 对给定的值 x,y 应用指定的二元操作函数 */

public static Function, T> op(T x, T y) {

return opFunc -> opFunc.apply(x, y);

}

/** 将两个函数使用组合成一个函数,这个函数接受一个二元操作函数(eg +, -, * , /) */

public static Function, T> op(Function funcx, Function funcy, T x) {

return opFunc -> opFunc.apply(funcx.apply(x), funcy.apply(x));

}

/** 将两个函数组合成一个叠加函数, compose(f,g) = f(g) */

public static Function compose(Function funcx, Function funcy) {

return x -> funcx.apply(funcy.apply(x));

}

/** 将若干个函数组合成一个叠加函数, compose(f1,f2,...fn) = f1(f2(...(fn))) */

public static Function compose(Function... extraFuncs) {

if (extraFuncs == null || extraFuncs.length == 0) {

return x->x;

}

return x -> Arrays.stream(extraFuncs).reduce(y->y, FunctionImplementingDecrator::compose).apply(x);

}

public static Function, Function> op(Function funcx, Function funcy) {

//return opFunc -> { return aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT)); };

return opFunc -> aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT));

/* Equivalent to

return new Function, Function>() {

@Override

public Function apply(

BiFunction opFunc) {

return new Function() {

@Override

public T apply(T aT) {

return opFunc.apply(funcx.apply(aT), funcy.apply(aT));

}

};

}

};*/

}

}

编写“【接受函数参数】并返回【能够接受函数参数的函数】的【高阶函数】”的一点小技巧:直接用 lambda 表达式的角度去思考,辅以数学推导。

比如要编写一个函数 F(G,H) , 接受两个一元函数参数 G(x) , H(x) ,返回一个函数: R(op) ,R(op) 接受一个二元操作函数 op(x,y),返回一个一元函数 T(x)。即:F(G(x), H(x)) = R(op)(x) = op(G, H)(x) = T(x) : x -> op(G(x), H(x))

看上去挺绕的!那么该怎么写呢?

先理一理: R(op)(x) = G(x) op H(x) = op(G, H)(x) 。由于 R(op) 是接受一个二元操作函数 opFunc, 那么应该有 opFunc -> opFunc(G, H) ; 完成了一半! 注意到,opFunc(G,H) 的结果应当是一个单元函数 T(x) ,opFunc(G,H) = x -> T(x) , T(x) = op(G(x), H(x)) ; 于是最终有 F(G(x), H(x)) = opFunc -> { x -> opFunc(G(x), H(x)) }

public static Function, Function> op(Function funcx, Function funcy) {

return opFunc -> { return aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT)); };

}

只要是赋值给函数接口,一定有 (x1,x2,...,xn) -> F(x1,x2,...,Xn) 形式。 然后无非是这种形式的组合及嵌套。 经过一通脑筋急转弯之后,似乎摸到了一点窍门。化简成 lambda 表达式的形式是(IDE会自动提示):

public static Function, Function> op(Function funcx, Function funcy) {

return opFunc -> aT -> opFunc.apply(funcx.apply(aT), funcy.apply(aT));

}

第一种形式更容易理解, 第二种形式比较简洁。显然, -> 符号是右结合优先的。

由此可见,函数式编程可以通过凝练的代码形式将函数能力组合起来,构建强大的抽象表达能力,对于消除重复代码及框架设计有很大的益处。同时,使用函数编程需要经常从“函数及组合的层面”去思考计算,而不是从通常的“求值层面”去思考计算。这无疑对抽象思维能力有更高的要求。

不是每个知识点都要正儿八经地写上一篇文章,多尝试摸索窍门反而是妙法 😃

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值