3.1线性回归基本形式
基本形式
。形式简单,易于建模
。蕴含机器学习的基本思想
。是其他非线性模型的基础
。权重体现出各属性重要性,可解释性强
W是权值,b是系数
目标函数(单变量)
均方误差最小化(最小二乘法)
。找到一条直线
3.2线性回归模型的python实现
Sklearn.linear_model中的LinearRegression可实现线性回归
3.3波士顿房价预测的python实现
#波士顿房价数据回归分析
fromsklearn.datasetsimportload_boston
fromsklearn.linear_modelimportLinearRegression
importmatplotlib.pyplotasplt
bosten=load_boston()#实例化
x=bosten.data[:,5:6]
clf=LinearRegression()
clf.fit(x,bosten.target)#模型训练
clf.coef_#回归系数
y_pre=clf.predict(x)#模型输出值
plt.scatter(x,bosten.target)#样本实际分布
plt.plot(x,y_pre)#绘制拟合曲线
plt.show()
3.4逻辑回归介绍
分类和回归而这不存在不可逾越的鸿沟。
逻辑回归是对数几率回归,属于广义的线性回归,他的因变量只有0,1
3.5研究生入学录取预测的python实现
4.1从女生相亲到决策树
4.3决策树拆分属性选择
问题:对于给定的样本集,如何判断应该在哪一个上行上进行拆分
。目标是寻找较小的树,衡量一个节点的纯度,悬着纯度高的进行拆分
。纯度
。熵:不确定性度量
信息增益:对纯度提升的程度
4.4决策树算法家族
4.5泰坦尼克号生还者预测——数据预处理
4.6泰坦尼克哈生还者预测——模型建立与预测