python 决策树回归_python机器学习实战3-4

本文介绍了Python中线性回归的基本形式和实现,包括均方误差最小化的最小二乘法。接着,通过波士顿房价预测展示了线性回归的实战应用。此外,文章还探讨了决策树的拆分属性选择策略,如熵和信息增益,以及在泰坦尼克号生还者预测中的应用。
摘要由CSDN通过智能技术生成

3.1线性回归基本形式

基本形式

。形式简单,易于建模

。蕴含机器学习的基本思想

。是其他非线性模型的基础

。权重体现出各属性重要性,可解释性强

b75d6a5edde9f8f0f0d6110ad7c348e2.png

W是权值,b是系数

目标函数(单变量)

均方误差最小化(最小二乘法)

。找到一条直线

3.2线性回归模型的python实现

Sklearn.linear_model中的LinearRegression可实现线性回归

45dd42bf69f697f0c6c22b4e56072552.png

18b3c4080e16abfbbd4d416352f1e118.png

3.3波士顿房价预测的python实现

aaffa358a10fce0dfd3c7aa55df4cacb.png
#波士顿房价数据回归分析
fromsklearn.datasetsimportload_boston
fromsklearn.linear_modelimportLinearRegression
importmatplotlib.pyplotasplt
 
bosten=load_boston()#实例化
x=bosten.data[:,5:6]
 
clf=LinearRegression()
clf.fit(x,bosten.target)#模型训练
clf.coef_#回归系数
y_pre=clf.predict(x)#模型输出值
 
plt.scatter(x,bosten.target)#样本实际分布
plt.plot(x,y_pre)#绘制拟合曲线
plt.show()

03df1c84a56d0afab4e62896c2c1e2db.png

3.4逻辑回归介绍

分类和回归而这不存在不可逾越的鸿沟。

逻辑回归是对数几率回归,属于广义的线性回归,他的因变量只有0,1

6ead53f711646d3300679354b22521d9.png

651482e7e79e17dc2f38f4d5722a6753.png

3fee404b2298d98f70d43db37ff635a4.png

bd3214082c70e5d34b9ec32e1dd95849.png

3.5研究生入学录取预测的python实现

2ab26e9a17521b333ce4dc6ab0d529f2.png

a0986496c26673401a2b3002f9d2a90b.png

4.1从女生相亲到决策树

00e35e861a3ee743308590f12633a366.png

4.3决策树拆分属性选择

问题:对于给定的样本集,如何判断应该在哪一个上行上进行拆分

。目标是寻找较小的树,衡量一个节点的纯度,悬着纯度高的进行拆分

。纯度

75e8e811d7899e0e10267c241f5a3ede.png

66f5a56dd71b34a3b0f4e2668925f08c.png

。熵:不确定性度量

5e81528069fa055f0b156b1044284133.png

信息增益:对纯度提升的程度

2465d2b136e237db761dafa60ee16b08.png

4.4决策树算法家族

a2130e826777e716108ac383388f751f.png

db54f79c70919ff4de3ad6928dbb965f.png

4.5泰坦尼克号生还者预测——数据预处理

d49e0b2bb51d28b752e8d43d44218e3d.png

4.6泰坦尼克哈生还者预测——模型建立与预测

61c0d8477ac08fc0582cf9d10afaa3ad.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值