maximum.accumulate函数及ndarray和list比较

一、ndarray不同与list

import numpy as np
array = [0,1,2,3,,4]
Indexs = [1,2,3]
array = np.delete(array,Indexs,0)
print("second array:",array)
print(array.index([0,0]))

numpy.delete()删除过索引的对象后返回的是ndarray,而不是list,所以不能使用index查找元素的位置。

二、转化成列表tolist

list_a = [1, 2, 1, 3, 1, 5, 1, 7, 1, 5, 9]
list_cu = np.maximum.accumulate(list_a)
print(list_cu)
indexs_ = list_cu.tolist()[0]
print(indexs_)
list_ = (list_cu - list_a)/list_cu
print(list_[:])
index = np.argmax(list_[:])
print(index)

三、数组(特定轴)的累积最大值

import numpy as np

d = np.array([2, 0, 3, -4, -2, 7, 9])
c = np.maximum.accumulate(d)
print(c)   
# array([2, 2, 3, 3, 3, 7, 9])

def MaxDrawdown(return_list):
    # 结束位置
    i = np.argmax((np.maximum.accumulate(return_list) - return_list) /         
                   np.maximum.accumulate(return_list))  
    if i == 0:
        return 0
    j = np.argmax(return_list[:i])  # 开始位置
    return (return_list[j] - return_list[i]) / (return_list[j])

四、参考

np.maximum.accumulate用法 - CSDN

numpy 计算最大回撤 | Waiting For You (waitingfy.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

**星光*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值