概述
由于饼图/圆环图的饼块大小和饼块背景色影响,直接在饼块上添加注释或标签效果并不好,往往需要在饼块外添加标签,并在标签与饼块之间添加引导线。matplotlib没有提供直接绘制引导线的接口,需要自己定义。
添加引导线的思路如下:
- 计算饼块的角度。
- 计算注释标签的坐标。
- 判断饼块位于圆环的左侧或右侧,确定标签文本的对齐方式。
- 确定引导线的连接样式,使引导线从饼块指向注释标签。
- 使用annotate函数绘制注释标签和引导线。
一、绘制圆环图的引导线
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = ["simhei"]
data = {"机械": 120, "电子": 90, "计算机": 50, "经管": 60, "建筑": 100, "汽车": 50}
# 构造数据
data = pd.DataFrame([data])
# 绘制圆环图,并返回饼块对象
wedges, texts = plt.pie(data.iloc[0], wedgeprops={"width": 0.5})
# 构造annotate函数的**kwargs参数,设置引导线线型
kw = dict(arrowprops=dict(arrowstyle="-"), zorder=0, va="center")
# 遍历饼块绘制注释标签和引导线
for i, p in enumerate(wedges):
# 根据matplotlib.patches.Wedge对象的theta1和theta2参数计算饼块均分点的角度
ang = (p.theta2 - p.theta1) / 2.0 + p.theta1
# 根据角度的弧度计算 饼块均分点的坐标(引导线的起点)
y = np.sin(np.deg2rad(ang))
x = np.cos(np.deg2rad(ang))
# print(p.theta1, p.theta2, ang, np.deg2rad(ang), x, y)
# 演示引导线起点位置
# plt.plot(x, y, "or")
# 根据x的值即角度所在象限确定引导线的对齐方式
horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
# 设置引导线的连接方式
connectionstyle = "angle,angleA=0,angleB={}".format(ang)
kw["arrowprops"].update({"connectionstyle": connectionstyle})
# 绘制注释标签和引导线
plt.annotate(
data.columns[i],
xy=(x, y),
xytext=(1.35 * np.sign(x), 1.4 * y),
horizontalalignment=horizontalalignment,
**kw
)
plt.title("专业人数占比")
plt.show()
matplotlib_文字注释 plt.text();plt.annotate()
二、多组数据直方图
data = np.random.randn(1000,2)
plt.hist(x = data, # 绘图数据
bins = 20, # 指定直方图的条形数为20个
edgecolor = 'w', # 指定直方图的边框色
color = ['c','r'], # 指定直方图的填充色
label = ['第一组','第二组'], # 为直方图呈现图例
density = False, # 是否将纵轴设置为密度,即频率
alpha = 0.6, # 透明度
rwidth = 1, # 直方图宽度百分比:0-1
stacked = False) # 当有多个数据时,是否需要将直方图呈堆叠摆放,默认水平摆放
ax = plt.gca() # 获取当前子图
ax.spines['right'].set_color('none') # 右边框设置无色
ax.spines['top'].set_color('none') # 上边框设置无色
# 显示图例
plt.legend()
# 显示图形
plt.show()