二、控制系统的数学模型(第六版书)

本文介绍了静态数学模型与动态数学模型的区别,着重讲解了线性微分方程在控制系统中的应用,包括叠加原理、运动模态及其由特征根决定的特点,以及复数域中的传递函数和共轭复模态的处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在静态条件下(即变量各阶导数为零),描述变量之间的代数方程叫静态数学模型,描述变量各阶导数之间关系的微分方程叫动态数学模型。

时域中常用的数学模型有微分方程、差分方程和状态方程。

复数域中有传递函数、结构图。

频域中有频率特性等。

控制系统的时域数学模型

用线性微分方程描述的元件或系统,称为线性元件或线性系统,可以应用叠加原理。具有可叠加性和均匀性。

运动的模态:线性微分方程的解由输入作用下的特解和齐次微分方程的通解组成。通解由微分方程的特征根决定,代表自由运动。

  1. 特征根是\lambda _{1}\lambda _{2},...,\lambda _{n}且无重根,则把函数e^{\lambda _{1}t}e^{\lambda _{1}t},..,e^{\lambda _{1}t}称为该微分方程的模态,也叫振型。
  2. 特征根中有多重根\lambda,则模态会具有te^{\lambda t}t^{2}e^{\lambda t}的函数。
  3. 特征根中有共轭复根\lambda =\sigma +jw,则其共轭复模态e^{(\sigma +jw)t}e^{(\sigma - jw)t}可写成实函数模态e^{\sigma t}\sin wte^{\sigma t}\cos wt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Nooice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值