在静态条件下(即变量各阶导数为零),描述变量之间的代数方程叫静态数学模型,描述变量各阶导数之间关系的微分方程叫动态数学模型。
时域中常用的数学模型有微分方程、差分方程和状态方程。
复数域中有传递函数、结构图。
频域中有频率特性等。
控制系统的时域数学模型
用线性微分方程描述的元件或系统,称为线性元件或线性系统,可以应用叠加原理。具有可叠加性和均匀性。
运动的模态:线性微分方程的解由输入作用下的特解和齐次微分方程的通解组成。通解由微分方程的特征根决定,代表自由运动。
- 特征根是
,
,...,
且无重根,则把函数
,
,..,
称为该微分方程的模态,也叫振型。
- 特征根中有多重根
,则模态会具有
,
的函数。
- 特征根中有共轭复根
,则其共轭复模态
,
可写成实函数模态
与
。