图像掩膜工具

此工具用于绘制图像的掩膜 mask,可对文件夹内图片进行涂鸦选取掩膜。
在这里插入图片描述
在这里插入图片描述

功能:支持多图像文件的提取;支持画笔大小、颜色设置、透明度;支持擦除和清除;等等。

支持深度学习图像分割,多个标签的掩膜,映射到指定像素值。

在这里插入图片描述

在这里插入图片描述

### 图像掩膜处理概述 图像掩膜是一种常见的计算机视觉技术,用于提取感兴趣区域或修改特定部分的像素值。通过创建二值化掩膜或将颜色范围映射到布尔矩阵上,可以实现复杂的图像操作。 以下是基于 Python 和 OpenCV 的图像掩膜处理示例代码: ```python import cv2 import numpy as np # 加载原始图像 image = cv2.imread('input_image.jpg') # 转换为 HSV 颜色空间以便于阈值分割 hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 定义目标颜色范围 (例如红色) lower_bound = np.array([0, 120, 70]) # 较低的 HSV 值 upper_bound = np.array([10, 255, 255]) # 较高的 HSV 值 # 创建掩膜 mask = cv2.inRange(hsv_image, lower_bound, upper_bound) # 应用掩膜到原图 result = cv2.bitwise_and(image, image, mask=mask) # 显示结果 cv2.imshow('Original Image', image) cv2.imshow('Mask', mask) cv2.imshow('Resultant Image', result) cv2.waitKey(0) cv2.destroyAllWindows() ``` 此代码展示了如何加载一张图片并将其转换为 HSV 颜色空间,随后定义一个颜色范围来生成掩膜,并最终应用该掩膜显示感兴趣的区域[^4]。 ### 关键点解析 - **颜色空间转换**:通常 RGB 空间不适合进行精确的颜色匹配,因此推荐使用 HSV 或 LAB 空间。 - **掩膜生成**:`cv2.inRange()` 函数可以根据指定的颜色区间生成二值化的掩膜。 - **逻辑运算**:利用 `cv2.bitwise_and()` 将掩膜应用于输入图像,从而保留符合条件的部分。 对于更高级的应用场景,GitHub 上有许多开源项目提供了丰富的教程和工具支持。例如,OpenCV 的官方文档以及社区贡献的内容均能提供进一步指导[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值