关注微信公众号 “程序员小胖” 每日技术干货,第一时间送达!
引言
在当今云计算和微服务架构大行其道的时代,分布式系统成为了构建高可用、高性能应用的基石。然而,随着系统规模的扩张,数据的一致性问题如同幽灵般萦绕在每位架构师心头,尤其是分布式事务处理中的挑战更是首当其冲。今天,让我们一起深入探索分布式事务模型中的“最终一致性”,揭开它那既神秘又强大的面纱。
分布式事务的挑战与背景
想象一下双十一购物节,数百万用户同时下单,订单系统、库存系统、支付系统等多个服务间需要协同完成交易。采用最终一致性模型,即使瞬间请求激增导致部分操作延迟,系统也能确保在合理的时间框架内调整库存、确认订单状态,从而维持整体业务流程的顺畅。
最终一致性?
在分布式系统中,最终一致性是一种事务模型,它保证系统中的所有数据副本最终会达到一致的状态,但不保证立即的一致性。这种模型允许在数据复制过程中存在短暂的不一致状态,但随着时间的推移,系统会通过各种机制确保数据最终达到一致。
实现策略
补偿事务(TCC)
TCC,即Try-Confirm-Cancel,是一种通过预先定义的确认和取消操作来保证事务最终一致性的模式。
**Try 阶段:**调用 Try 接口,尝试执行业务,完成所有业务检查,预留业务资源。
Confirm 或 Cancel 阶段:两者是互斥的,只能进入其中一个,并且都满足幂等性,允许失败重试。
**Confirm 操作:**对业务系统做确认提交,确认执行业务操作,不做其他业务检查,只使用 Try 阶段预留的业务资
源。
**Cancel 操作:**在业务执行错误,需要回滚的状态下执行业务取消,释放预留资源。
转账场景示例:
//Account类代表一个账户,拥有冻结、解冻、存款和取款的方法。Money类代表金额。
public class AccountService {
// Try阶段:检查账户余额并冻结资金
public boolean prepareTransfer(Account source, Account target, Money amount) {
if (source.getBalance() < amount) {
return false;