基于yolov5+deepsort的智能售货机商品目标检测种类识别计数

起源

智能售货机的摄像头录下用户购物的视频,并上传到服务器,服务器识别商品种类,识别拿出和放入的种类、数量。如下
left表示拿出数量
最终服务器返回json数据给客户端:
在这里插入图片描述

第一步,训练yolov5模型

看炮哥的视频:https://www.bilibili.com/video/BV1f44y187Xg?spm_id_from=333.999.0.0
搞完就可以识别类别了,但是还不能计数

第二步 ,研究deepsort

deepsort可以计数了,它也是基于yolov5的
还得是炮哥:https://www.bilibili.com/video/BV1Bq4y1N71k?spm_id_from=333.999.0.0

不过有炮哥还是不够的,还得看看别的哥:
https://blog.csdn.net/m0_37605642/article/details/122590352
https://blog.csdn.net/weixin_53711236/article/details/123762215

  • 4
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论
近年来,深度学习技术的飞速发展,使得视觉识别技术在车辆和行人的监管和管控等领域中逐渐得到广泛应用。其中,由YOLOv5DeepSORT组合实现的车辆行人的检测、追踪和计数系统具有出色的性能和灵活性,已经被广泛运用于交通安全、城市智慧管理等领域。 YOLOv5是目前最先进的一种物体检测技术,运用领先的深度学习算法和现代化的硬件设备,实现了毫秒级别的准确物体检测,并能够在大规模数据上进行训练,具有高精度、高效率和高适应性等特点。 DeepSORT算法则是一种基于卡尔曼滤波和匈牙利算法的目标追踪技术,采用多个视觉特征联合匹配的方法,能够实现对多目标的快速准确跟踪,并通过追踪结果进行目标计数。 综合应用YOLOv5DeepSORT技术,可以实现对车辆和行人的实时检测、追踪和计数。具体实现方式包括以下步骤: 首先,通过YOLOv5模型对输入图像进行物体检测,根据预设的检测策略和检测器参数,输出每个检测框包含的目标信息和对应的位置。 其次,根据DeepSORT模型进行目标追踪,将已检测到的目标与上一帧已追踪的目标进行特征匹配,根据距离和可信度等特征进行目标关联,以确定目标的轨迹并不断更新。 最后,通过对轨迹进行简单的统计和整理,即可得到对车辆和行人的统计计数结果,实现对目标的全程监控和管理。 总体来说,YOLOv5DeepSORT结合的车辆行人检测、追踪和计数系统可以快速准确实现对城市的智慧化管理,为保障城市公众的生命、安全和财产利益提供了关键技术支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小俊_

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值