队列&栈

1、队列

1.1 队列:先入先出的数据结构

队列实现一般采用循环队列的形式,可以有效的节约空间,提高空间利用率。
下面给出循环队列的实现,完成插入,删除,取出,判断是否为空,是否满的操作:

class MyCircularQueue {
	//模拟队列
    private int[] queue;
    //队列长度,开始位置和插入的数据长度
    private int head;
    private int count;
    private int capacity;
    /** Initialize your data structure here. Set the size of the queue to be k. */
    public MyCircularQueue(int k) {
        this.queue = new int[k];
        this.count = 0;
        this.head = 0;
        this.capacity = k;
    }
    
    /** Insert an element into the circular queue. Return true if the operation is successful. */
    public boolean enQueue(int value) {
        if(this.count == this.capacity){
        	return false;
        }
        this.queue[(this.head + this.count) % this.capacity] = value;
        this.count += 1;
        return true;
    }
    
    /** Delete an element from the circular queue. Return true if the operation is successful. */
    public boolean deQueue() {
        if(this.count == 0){
        	return false;
        }
        this.head = (this.head + 1) % this.capacity;
        this.count -= 1;
        return true;
    }
    
    /** Get the front item from the queue. */
    public int Front() {
        if(this.count == 0){
        	return -1;
        }
        return this.queue[this.head];
    }
    
    /** Get the last item from the queue. */
    public int Rear() {
        if(this.count == 0){
        	return -1;
        }
        return this.queue[(this.head  + this.count - 1) % this.capacity];
    }
    
    /** Checks whether the circular queue is empty or not. */
    public boolean isEmpty() {
        if(this.count == 0){
        	return true;
        }
        return false;
    }
    
    /** Checks whether the circular queue is full or not. */
    public boolean isFull() {
        if(this.count == this.capacity){
        	return true;
        }
        return false;
    }
}

1.2 队列和广度优先搜索

队列的重点一般和广度优先搜索(BFS)放在一起,利用BFS找到从起始节点到目标节点的路径,特别是最短节点,所以,看到题目中如果出现赵最短路径的问题,一般想到的就是BFS,下面给出这类题目的BFS模版:

/**
 * Return the length of the shortest path between root and target node.
 */
int BFS(Node root, Node target) {
    Queue<Node> queue;  // store all nodes which are waiting to be processed
    int step = 0;       // number of steps neeeded from root to current node
    // initialize
    add root to queue;
    // BFS
    while (queue is not empty) {
        step = step + 1;
        // iterate the nodes which are already in the queue
        int size = queue.size();
        for (int i = 0; i < size; ++i) {
            Node cur = the first node in queue;
            return step if cur is target;
            for (Node next : the neighbors of cur) {
                add next to queue;
            }
            remove the first node from queue;
        }
    }
    return -1;          // there is no path from root to target
}

有时候,要确保节点不会被多次访问,造成死循环,因此加上一个哈希集统计访问过的节点:

/**
 * Return the length of the shortest path between root and target node.
 */
int BFS(Node root, Node target) {
    Queue<Node> queue;  // store all nodes which are waiting to be processed
    Set<Node> used;     // store all the used nodes
    int step = 0;       // number of steps neeeded from root to current node
    // initialize
    add root to queue;
    add root to used;
    // BFS
    while (queue is not empty) {
        step = step + 1;
        // iterate the nodes which are already in the queue
        int size = queue.size();
        for (int i = 0; i < size; ++i) {
            Node cur = the first node in queue;
            return step if cur is target;
            for (Node next : the neighbors of cur) {
                if (next is not in used) {
                    add next to queue;
                    add next to used;
                }
            }
            remove the first node from queue;
        }
    }
    return -1;          // there is no path from root to target
}

下面的三题针对这个问题进行学习:
在这里插入图片描述
先从第一题岛屿数量开始,需要找到“1”旁边所有的“1”来确定这一个岛屿的大小,因此采用BFS非常合适,直接套用上面的模版,因为本题不需要最短路径,所以不需要统计步数:

class Solution {
    public int numIslands(char[][] grid) {
        if(grid == null || grid.length == 0){
        	return 0;
        }
        int count = 0;
        int nr = grid.length;
        int nc = grid[0].length;
        for(int i = 0; i < nr ;i++){
        	for(int j = 0; j < nc; j++){
        		if(grid[i][j] == '1'){
        			count++;
        			grid[i][j] = '0';
        			Queue<Integer> queue = new LinkedList<>();
        			queue.offer(nc * i + j);
        			while(!queue.isEmpty()){
        				int id = queue.poll();
        				int row = id / nc;
        				int colum = id % nc;
        				if(row - 1 >= 0 && grid[row - 1][colum] == '1'){
        					queue.offer((row - 1) * nc + colum);
        					grid[row - 1][colum] = '0';
        				}
        				if(row + 1 < nr && grid[row + 1][colum] == '1'){
        					queue.offer((row + 1) * nc + colum);
        					grid[row + 1][colum] = '0';
        				}
        				if(colum - 1 >= 0 && grid[row][colum - 1] == '1'){
        					queue.offer((row) * nc + colum - 1);
        					grid[row][colum - 1] = '0';
        				}
        				if(colum + 1 < nc && grid[row][colum + 1] == '1'){
        					queue.offer((row) * nc + colum + 1);
        					grid[row][colum + 1] = '0';
        				}
        			}
        		}
        	}
        }
        return count;
    }
}

打开转盘锁就完全对应上述第二个模版了,将死亡的数字放入已经访问过的集合中,直接跳过就可以了。

class Solution {
    public int openLock(String[] deadends, String target) {
        Set<String> visited = new HashSet<>();
        for(String s : deadends){
        	visited.add(s);
        }
        Queue<String> queue = new LinkedList<>();
        queue.offer("0000");
        int step = 0;
        while(!queue.isEmpty()){
        	int sz = queue.size();
        	for(int i = 0; i < sz; i++){
        		String cur = queue.poll();
        		if(visited.contains(cur)){
        			continue;
        		}
        		if(cur.equals(target)){
        			return step;
        		}
        		visited.add(cur);
        		for(int j = 0; j < 4; j++){
        			char[] ch = cur.toCharArray();
        			if(ch[j] == '9'){
        				ch[j] = 0;
        			}else{
        				ch[j]++;
        			}
        			String tmp = new String(ch);
        			if(!visited.contains(tmp)){
        				queue.offer(tmp);
        			}
        			char[] ch2 = cur.toCharArray();
        			if(ch2[j] == '0'){
        				ch2[j] = 9;
        			}else{
        				ch2[j]--;
        			}
        			String tmp2 = new String(ch2);
        			if(!visited.contains(tmp2)){
        				queue.offer(tmp2);
        			}
        		}
        		
        	}
        	step++;
        }
        return -1;
    }
}

完全平方数也是直接套用就行了:

class Solution {
    public int numSquares(int n) {
        Set<Integer> visited = new HashSet<>();
        Queue<Integer> queue = new LinkedList<>();
        visited.add(0);
        queue.add(0);
        int step = 0;
        while(!queue.isEmpty()){
            int sz = queue.size();
            for(int i = 0; i < sz; i++){
                int cur = queue.poll();
                if(cur == n){
                    return step;
                }
                for(int j = 1; j * j + cur <= n; j++){
                    int next = j * j + cur;
                    if(next <= n && !visited.contains(next)){
                        queue.add(next);
                        visited.add(next);
                    }
                }

            }
            step++;
        }
        return step;
    }
}

2、栈

2.1 栈:后入先出的数据结构

栈与队列的先入先出的数据结构不同,栈是先入后出(LIFO)的方式,通常push()代表往栈中插入数据,pop()代表从栈中删除数据。
栈的实现就比较简单了,一个动态数组就可以了:

class MyStack {
    private List<Integer> data;             
    public MyStack() {
        data = new ArrayList<>();
    }
    /** Insert an element into the stack. */
    public void push(int x) {
        data.add(x);
    }
    /** Checks whether the queue is empty or not. */
    public boolean isEmpty() {
        return data.isEmpty();
    }
    /** Get the top item from the queue. */
    public int top() {
        return data.get(data.size() - 1);
    }
    /** Delete an element from the queue. Return true if the operation is successful. */
    public boolean pop() {
        if(data.isEmpty()){
        	return false;
        }
        data.remove(data.size() - 1);
        return true;
    }
};

下面通过四道练习题来学习栈的使用:
在这里插入图片描述
最小栈这一题采用一个辅助栈来存放当前存放数据中的最小值,这样保证在栈中数据弹出的时候,辅助栈中的数据也按同样的顺序弹出:

class MinStack {
	Deque<Integer> stack;
	Deque<Integer> minStack;
    /** initialize your data structure here. */
    public MinStack() {
		stack = new LinkedList<>();
		minStack = new LinkedList<>();
		minStack.push(Integer.MAX_VALUE);
    }
    
    public void push(int x) {
		stack.push(x);
		minStack.push(Math.min(minStack.peek(), x));
    }
    
    public void pop() {
		stack.pop();
		minStack.pop();
    }
    
    public int top() {
		return stack.peek();
    }
    
    public int getMin() {
		return minStack.peek();
    }
}

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack obj = new MinStack();
 * obj.push(x);
 * obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.getMin();
 */

有效的括号这一题就是标准的利用栈的先入后出结构,后进来的括号需要先进行匹配,这里需要一个Map集合用来存储括号对应关系来进行辅助:

class Solution {
    public boolean isValid(String s) {
    	int len = s.length();
    	if(len % 2 == 1){
    		return false;
    	}
		Deque<Character> stack = new LinkedList<>();
		Map<Character, Character> map = new HashMap<>(){{
			put(')','(');
			put(']','[');
			put('}','{');
		}};
		for(int i = 0; i < len; i++){
			char c = s.charAt(i);
			if(map.containsKey(c)){
				if(stack.isEmpty() || map.get(c) != stack.peek()){
					return false;
				}
				stack.pop();
			}else{
				stack.push(c);
			}
		}
		return stack.isEmpty();
    }
}

每日温度就是当数据比当前小的话就放入,一直遇到比他大的:

class Solution {
    public int[] dailyTemperatures(int[] T) {
        int len = T.length;
        int[] res = new int[len];
        Deque stack = new LinkedList<>();
        for(int i = 0; i < len; i++){
        	int tmp = T[i];
        	if(!stack.isEmpty() && tmp > T(stack.peek())){
        		int pre = stack.pop();
        		res[pre] = i - pre;
        	}
        	stack.push(i);
        }
        return res;
    }
}

逆波兰表达式就是纯粹的栈问题了,把数据全部存到栈中,遇到符号就取出两个数字,将结果再放入栈中:

class Solution {
    public int evalRPN(String[] tokens) {
        Deque<Integer> stack = new LinkedList<>();
        Integer op1;
        Integer op2;
        for(String s : tokens){
            switch (s){
                case "+":
                    op1 = stack.pop();
                    op2 = stack.pop();
                    stack.push(op1 + op2);
                    break;
                case "-":
                    op1 = stack.pop();
                    op2 = stack.pop();
                    stack.push(op2 - op1);
                    break;
                case "*":
                    op1 = stack.pop();
                    op2 = stack.pop();
                    stack.push(op1 * op2);
                    break;
                case "/":
                    op1 = stack.pop();
                    op2 = stack.pop();
                    stack.push(op2 / op1);
                    break;
                default:
                    stack.push(Integer.valueOf(s));
				    break;
            }
        }
        return stack.pop();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值