辗转相除法c语言简单,C语言辗转相除法求2个数的最小公约数

辗转相除法最大的用途就是用来求两个数的最大公约数。

用(a,b)来表示a和b的最大公约数。

有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c)。 (证明过程请参考其它资料)

例:求 15750 与27216的最大公约数。

解:

∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466)

∵15750=11466×1+4284  ∴(15750,11466)=(11466,4284)

∵11466=4284×2+2898  ∴(11466,4284)=(4284,2898)

∵4284=2898×1+1386   ∴(4284,2898)=(2898,1386)

∵2898=1386×2+126   ∴(2898,1386)=(1386,126)

∵1386=126×11     ∴(1386,126)=126

所以(15750,27216)=126

辗转相除法比较适合用来求两个比较大的数的最大公约数 。

代码如下:

#include

int main()

{

int a,b,temp,x;

scanf("%d%d",&a,&b);

if(a>b)

{

temp=b;

b=a;

a=temp;

}

while(b%a!=0)

{

x=b%a;

b=a;

a=x;

}

printf("%d",a);

}

以上所述是小编给大家介绍的C语言辗转相除法求2个数的最小公约数,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对得牛网网站的支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值