排序-归并排序

归并排序

在这里插入图片描述
归并排序本质上是分治法,就是在递归回溯回来的时候把数组排好序。

void MergeSort1(int *a, int p, int r){
	if (p<r){
		int q = (p+r)/2;
		MergeSort1(a, p, q);
		MergeSort1(a, q+1, r);
		int n1 = q-p+1;
        int n2 = r-q;
        int *L = new int[n1+1];
        int *R = new int[n2+1];
        int i, j, k;
        for (i=0; i<n1; i++)L[i] = a[p+i];
        for (j=0; j<n2; j++)R[j] = a[q+j+1];
        L[n1] = 10000000;		//保证把剩下的元素都拷贝进来
        R[n2] = 10000000;		//保证把剩下的元素都拷贝进来
        for (i=0, j=0, k=p; k<=r; k++){
            if (L[i]<=R[j]){
                a[k] = L[i];i++;
            }else{
                a[k] = R[j];j++;
            }
        }
        delete []L;
        delete []R;
	}
}

归并排序求逆序数

int rs;
void MergeSort(int *a, int p, int r){
	if (p<r){
		int q = (p+r)/2;
		MergeSort(a, p, q);
		MergeSort(a, q+1, r);
		int n1 = q-p+1;
        int n2 = r-q;
        int *L = new int[n1+1];
        int *R = new int[n2+1];
        int i, j, k;
        for (i=0; i<n1; i++)L[i] = a[p+i];
        for (j=0; j<n2; j++)R[j] = a[q+j+1];
        L[n1] = 10000000;		//保证把剩下的元素都拷贝进来
        R[n2] = 10000000;		//保证把剩下的元素都拷贝进来
        for (i=0, j=0, k=p; k<=r; k++){
            if (L[i]<=R[j]){
                a[k] = L[i];i++;
            }else{
                a[k] = R[j];j++;
                rs+= q-p+1;
            }
        }
        delete []L;
        delete []R;
	}
}
//测试方法
int main(){
    int a[5] = {4,3,2,1,0};
    rs = 0;
    MergeSort1(a,0,4);
    for(int i=0;i<5;i++)cout<<a[i]<<" ";cout<<endl;
    cout<<rs<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值