java 做题软件有哪些_Java做题要用到的工具

图的搜索算法:BFS和DFS详解

d01acdf52702

DFS(深度优先遍历)

深度优先搜索是从起始顶点开始,递归访问其所有邻近节点,比如A节点是其第一个邻近节点,而C节点又是A的一个邻近节点,则DFS访问A节点后再访问C节点,如果C节点有未访问的邻近节点的话将继续访问其邻近节点,否则继续访问A的未访问邻近节点,当所有从A节点出去的路径都访问完之后,继续递归访问除A以外未被访问的邻近节点。

所以上面我们的示意图的遍历顺序会是A->C->B->D->E->F。

BFS(广度优先遍历)

其主要思想是从起始点开始,将其邻近的所有顶点都加到一个队列(FIFO)中去,然后标记下这些顶点离起始顶点的距离为1.最后将起始顶点标记为已访问,今后就不会再访问。然后再从队列中取出最先进队的顶点A,也取出其周边邻近节点,加入队列末尾,将这些顶点的距离相对A再加1,最后离开这个顶点A。依次下去,直到队列为空为止。从上面描述的过程我们知道每个顶点被访问的次数最多一次(已访问的节点不会再访问),而对于连通图来说,每个顶点都会被访问。加上每个顶点的邻接链表都会被遍历,因此BFS的时间复杂度是Θ(V+E),其中V是顶点个数,E是边数,也就是所有邻接表中的元素个数。

所以我们上图的遍历顺序将会为:A->C->D->B->E->F

实现代码如下:

public class Graph { //A, B, C,D, E, F

static int[][] graph = new int[][]{{0, 0, 1, 1, 0, 0},

{0, 0, 1, 0, 0, 0},

{1, 1, 0, 0, 0, 0},

{0, 0, 1, 0, 1, 0},

{0, 0, 0, 1, 0, 1},

{0, 0, 0, 0, 1, 0}};

int[] help = new int[graph.length];//用来记录已经遍历过的元素

//DFS(深度优先遍历)同样适用于有向图 A->C->B->D->E->F 即 0->2->1->3->4->5

public void dfsTraversing(int node, int[][] graph) {

help[node]=1;

System.out.println(node);

for (int i = 0; i < graph[node].length; ++i) {

if (help[i]==0&&i != node&&graph[node][i]==1) {

dfsTraversing(i, graph);

}

}

}

//BFS(广度优先遍历)同样适用于有向图 A->C->D->B->E->F 即0->2->3->1->4->5

public void bfsTraversing(int[][] graph) {

int[] queue=new int[graph.length];

int cnt=1;

queue[0]=0;//将A作为起始顶点加入队列

help[0]=1;

System.out.println(0);

for (int i=0;i

for (int j=0;j

if (queue[i]!=j&&graph[queue[i]][j]==1&&help[j]==0){

help[queue[i]]=1;

queue[cnt++]=j;

System.out.println(j);

}

}

}

}

}

DecimalFormat - 格式化数据

0占位符的使用

占位符比实际数字多

new DecimalFormat("00.00").format(3.14567);//结果:03.15

new DecimalFormat("0.000").format(3.14);//结果:3.140

new DecimalFormat("00.000").format(3.14);//结果:03.140

占位符比实际数字少

new DecimalFormat("00.00").format(13.14567);//结果:13.15

new DecimalFormat("0.000").format(13.14567);//结果:13.146

new DecimalFormat("0.00").format(13.14567);//结果:13.15

#占位符的使用

占位符比实际数字多

new DecimalFormat("##.##").format(3.14567);//结果:3.15

new DecimalFormat("#.###").format(3.14);//结果:3.14

new DecimalFormat("##.###").format(3.14);//结果:3.14

占位符比实际数字少

new DecimalFormat("#.###").format(13.145678);//结果:13.146

new DecimalFormat("##.##").format(13.14567);//结果:13.15

new DecimalFormat("#.##").format(13.14567);//结果:13.15

DecimalFormat的格式化方式(舍入方式)

DecimalFormat format = new DecimalFormat("#.##");

//指定舍入方式为:RoundingMode.DOWN,直接舍去格式化以外的部分

format.setRoundingMode(RoundingMode.DOWN);

String formatDown = format.format(13.14567);//结果:13.14

//指定舍入方式为:RoundingMode.HALF_UP,四舍五入

format.setRoundingMode(RoundingMode.HALF_UP);

String formatHalfUp = format.format(13.14567);//结果:13.15

Dijkstra算法Java实现

import java.util.Scanner;

import java.util.*;

public class Main {

private static int IMAX = 10000; //不连通状态

public static int[][] adjMat ={

{0,1,3,6},

{1,0,IMAX,6},

{3,IMAX,0,2},

{6,6,2,0}

};

public static void main(String[] args) {

Dijkstra(adjMat,0,3);

}

public static void LoopNode(){

Node head = new Node();

Node temp = head;

for (int i = 0;i<10;i++){

temp.val = i;

temp.next = new Node();

temp = temp.next;

}

temp.val = 10;

temp.next = head;

Node node1,node2;

node1 = node2 = head;

while (true){

node1 = node1.next;

node2 = node2.next.next;

if (node1 == node2)

break;

}

System.out.println("is Loop");

}

public static void Dijkstra(int[][] martix,int start,int terminal){

boolean []isVisted = new boolean[martix.length];

int []d = new int[martix.length];

for (int i = 0;i

isVisted[i] = false; //该点是否被计入,可以理解为判断该点是否已经加入集合B

d[i] = IMAX;//在当前的集合B所能连接的路径中,从起始点到该点的最短路径

}

isVisted[start] = true;

d[start] = 0;

int unVisitNode = martix.length ;

int index = start;

while (unVisitNode > 0 && !isVisted[terminal] ){

int min = IMAX;

//选出集合A中的点到集合B的路径最短的点

for (int i = 0;i

if (min > d[i] && !isVisted[i]){

index = i;

min = d[i];

}

}

for (int i = 0;i

if (d[index] + martix[index][i] < d[i]) //更新当前的最短路径

d[i] = d[index] + martix[index][i];

}

unVisitNode -- ;

isVisted[index] = true;

}

System.out.println(d[terminal]);

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值