图的搜索算法:BFS和DFS详解
DFS(深度优先遍历)
深度优先搜索是从起始顶点开始,递归访问其所有邻近节点,比如A节点是其第一个邻近节点,而C节点又是A的一个邻近节点,则DFS访问A节点后再访问C节点,如果C节点有未访问的邻近节点的话将继续访问其邻近节点,否则继续访问A的未访问邻近节点,当所有从A节点出去的路径都访问完之后,继续递归访问除A以外未被访问的邻近节点。
所以上面我们的示意图的遍历顺序会是A->C->B->D->E->F。
BFS(广度优先遍历)
其主要思想是从起始点开始,将其邻近的所有顶点都加到一个队列(FIFO)中去,然后标记下这些顶点离起始顶点的距离为1.最后将起始顶点标记为已访问,今后就不会再访问。然后再从队列中取出最先进队的顶点A,也取出其周边邻近节点,加入队列末尾,将这些顶点的距离相对A再加1,最后离开这个顶点A。依次下去,直到队列为空为止。从上面描述的过程我们知道每个顶点被访问的次数最多一次(已访问的节点不会再访问),而对于连通图来说,每个顶点都会被访问。加上每个顶点的邻接链表都会被遍历,因此BFS的时间复杂度是Θ(V+E),其中V是顶点个数,E是边数,也就是所有邻接表中的元素个数。
所以我们上图的遍历顺序将会为:A->C->D->B->E->F
实现代码如下:
public class Graph { //A, B, C,D, E, F
static int[][] graph = new int[][]{{0, 0, 1, 1, 0, 0},
{0, 0, 1, 0, 0, 0},
{1, 1, 0, 0, 0, 0},
{0, 0, 1, 0, 1, 0},
{0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 1, 0}};
int[] help = new int[graph.length];//用来记录已经遍历过的元素
//DFS(深度优先遍历)同样适用于有向图 A->C->B->D->E->F 即 0->2->1->3->4->5
public void dfsTraversing(int node, int[][] graph) {
help[node]=1;
System.out.println(node);
for (int i = 0; i < graph[node].length; ++i) {
if (help[i]==0&&i != node&&graph[node][i]==1) {
dfsTraversing(i, graph);
}
}
}
//BFS(广度优先遍历)同样适用于有向图 A->C->D->B->E->F 即0->2->3->1->4->5
public void bfsTraversing(int[][] graph) {
int[] queue=new int[graph.length];
int cnt=1;
queue[0]=0;//将A作为起始顶点加入队列
help[0]=1;
System.out.println(0);
for (int i=0;i
for (int j=0;j
if (queue[i]!=j&&graph[queue[i]][j]==1&&help[j]==0){
help[queue[i]]=1;
queue[cnt++]=j;
System.out.println(j);
}
}
}
}
}
DecimalFormat - 格式化数据
0占位符的使用
占位符比实际数字多
new DecimalFormat("00.00").format(3.14567);//结果:03.15
new DecimalFormat("0.000").format(3.14);//结果:3.140
new DecimalFormat("00.000").format(3.14);//结果:03.140
占位符比实际数字少
new DecimalFormat("00.00").format(13.14567);//结果:13.15
new DecimalFormat("0.000").format(13.14567);//结果:13.146
new DecimalFormat("0.00").format(13.14567);//结果:13.15
#占位符的使用
占位符比实际数字多
new DecimalFormat("##.##").format(3.14567);//结果:3.15
new DecimalFormat("#.###").format(3.14);//结果:3.14
new DecimalFormat("##.###").format(3.14);//结果:3.14
占位符比实际数字少
new DecimalFormat("#.###").format(13.145678);//结果:13.146
new DecimalFormat("##.##").format(13.14567);//结果:13.15
new DecimalFormat("#.##").format(13.14567);//结果:13.15
DecimalFormat的格式化方式(舍入方式)
DecimalFormat format = new DecimalFormat("#.##");
//指定舍入方式为:RoundingMode.DOWN,直接舍去格式化以外的部分
format.setRoundingMode(RoundingMode.DOWN);
String formatDown = format.format(13.14567);//结果:13.14
//指定舍入方式为:RoundingMode.HALF_UP,四舍五入
format.setRoundingMode(RoundingMode.HALF_UP);
String formatHalfUp = format.format(13.14567);//结果:13.15
Dijkstra算法Java实现
import java.util.Scanner;
import java.util.*;
public class Main {
private static int IMAX = 10000; //不连通状态
public static int[][] adjMat ={
{0,1,3,6},
{1,0,IMAX,6},
{3,IMAX,0,2},
{6,6,2,0}
};
public static void main(String[] args) {
Dijkstra(adjMat,0,3);
}
public static void LoopNode(){
Node head = new Node();
Node temp = head;
for (int i = 0;i<10;i++){
temp.val = i;
temp.next = new Node();
temp = temp.next;
}
temp.val = 10;
temp.next = head;
Node node1,node2;
node1 = node2 = head;
while (true){
node1 = node1.next;
node2 = node2.next.next;
if (node1 == node2)
break;
}
System.out.println("is Loop");
}
public static void Dijkstra(int[][] martix,int start,int terminal){
boolean []isVisted = new boolean[martix.length];
int []d = new int[martix.length];
for (int i = 0;i
isVisted[i] = false; //该点是否被计入,可以理解为判断该点是否已经加入集合B
d[i] = IMAX;//在当前的集合B所能连接的路径中,从起始点到该点的最短路径
}
isVisted[start] = true;
d[start] = 0;
int unVisitNode = martix.length ;
int index = start;
while (unVisitNode > 0 && !isVisted[terminal] ){
int min = IMAX;
//选出集合A中的点到集合B的路径最短的点
for (int i = 0;i
if (min > d[i] && !isVisted[i]){
index = i;
min = d[i];
}
}
for (int i = 0;i
if (d[index] + martix[index][i] < d[i]) //更新当前的最短路径
d[i] = d[index] + martix[index][i];
}
unVisitNode -- ;
isVisted[index] = true;
}
System.out.println(d[terminal]);
}