python三人同行七十稀_三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知.这句诗的诗意....

这篇博客探讨了中国古代数学家程大位解决‘物不知其数’问题的方法,即中国剩余定理。通过四句诗,程大位巧妙地概括了解决这类同余问题的步骤。博客详细解释了每句诗背后的数学原理,如利用70、21、15作为基数,并结合105作为公倍数来找到答案。此外,还提出了另一种解题方法,尽管本质相同,但提供了不同的思考角度。此问题展示了中国古代数学的卓越成就,该定理至今仍被世界称为中国剩余定理或孙子定理。
摘要由CSDN通过智能技术生成

共回答了11个问题采纳率:81.8%

明朝有位程大位,他在解答“物不知其数”问题(即:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩2,问物几何?)用四句诗概括这类问题的解决:

三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知.

这首诗就是解答此类问题的金钥匙,它被世界各国称为中国剩余定理或孙子定理,是我国古代数学的一项辉煌成果.

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”

我们就从上述四句诗中来找答案:

三人同行七十稀,把除以3所得的余数用70乘.

五树梅花日一枝,把除以5所得的余数用21乘.

七子团圆正半月,把除以7所得的余数用15剩.

除百零五便得知,把上述三个积加起来,减去105的倍数,所得的差即为所求.

列式为:2×70+3×21+2×15=233,233-105×2=23.

为什么70,21,15,105有如此神奇作用?70,21,15,105是从何而来?

先后70,21,15,105的性质:

70除以3余1,被5,7整除,所以70a除以3余a,也被5,7整除;

21余以5余1,被3,7整除,所以21b除以5余b,也被3,7整除;

15除以7余1,被3,5整除,所以15c除以7余c,被3,5整除.

而105则是3,5,7的最小公倍数.

总之来说:70a+21b+15c是被3除余a,被5除余b,被7除余c的数,这个数如果大了,还要减去它们的公倍数.

现在我们来提出别外一种解法,本质上是与上述方法相同,请大家不妨仔细体会一下.

先把题目改动一下:“今有物不知数,五五数之余二,七七数之余二,九九数之余四,问物几何?”

先找除以9余4的数:4,13,22,31,40,49,58,67……

其中除以7余2的数有:58.

但58除以5不余2,用58加上7和9的最小公倍数63,直到加成除以5余2为止:58,121,184,247……

1年前

3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值