题意
给出一颗有n个节点,以1号节点为根的树。现从1号节点开始,每次等概率地访问当前节点 u 的儿子中的一个节点 v,并赋予其深度
d
[
v
]
=
d
[
u
]
+
1
d[v] = d[u] + 1
d[v]=d[u]+1, 对每个节点共执行 K 次这样的操作( K = 当前节点儿子的数量 )。
问:用这种方式统计出的该树的最大深度
m
a
x
i
=
1
n
(
d
[
i
]
)
max_{i=1}^n(d[i])
maxi=1n(d[i]) 等于该树实际最大深度的概率。
分析
树形dp。
定义:
- d[u]表示从u开始以上述方式,访问其子树上的节点,能够取得正确深度的概率。
状态转移:
- d p [ u ] = 1 − ( 1 − s u m k ) k , s u m = ∑ v = s o n [ u ] d p [ v ] dp[u] = 1 - (1 - \frac{sum}{k})^k, sum = \sum_{v = son[u]}dp[v] dp[u]=1−(1−ksum)k,sum=∑v=son[u]dp[v] —— u非叶子节点
- d p [ u ] = 1 dp[u] = 1 dp[u]=1 —— u是叶子节点,且深度最大
- d p [ u ] = 0 dp[u] = 0 dp[u]=0 —— 其余叶子节点
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1e6 + 10;
const LL mod = 1e9 + 7;
vector<int> G[maxn];
int max_dep = 0, dep[maxn], son[maxn];
LL dp[maxn];
LL extgcd(LL a, LL b, LL &x, LL & y) {
LL d = a;
if (b != 0) {
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
} else {
x = 1; y = 0;
}
return d;
}
LL mod_inverse(LL a, LL m) {
LL x, y;
extgcd(a, m, x, y);
return (m + x % m) % m;
}
void add_edge(int u, int v)
{
G[u].push_back(v); G[v].push_back(u);
}
void dfs(int u, int p)
{
dep[u] = dep[p] + 1;
max_dep = max(max_dep, dep[u]);
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if (v == p) continue;
dfs(v, u);
son[u]++;
}
}
LL fast(LL x, LL k)
{
if (k == 0) return 1;
if (k == 1) return x;
LL ret = fast(x, k / 2);
if (k & 1) return x*ret%mod*ret%mod;
else return ret*ret%mod;
}
LL calc(LL k, LL sum)
{
LL m = (k - sum + mod) % mod, mi = mod_inverse(k, mod);
LL f = fast(m * mi % mod, k);
return (1 - f + mod) % mod;
}
void fuck(int u, int p)
{
if (son[u] == 0) {
dp[u] = (dep[u] == max_dep);
return;
}
LL sum = 0;
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if (v == p) continue;
fuck(v, u);
sum += dp[v];
}
dp[u] = calc((LL)son[u], sum);
}
int main()
{
freopen("J.in","r",stdin);
int n;
cin >> n;
for (int i = 0; i < n-1; i++) {
int u, v;
cin >> u >> v;
add_edge(u, v);
}
dfs(1, 0);
fuck(1, 0);
/* for (int i = 1; i <= n; i++)
cout << dp[i] << ' '; */
// cout << endl;
cout << dp[1] << endl;
}