掌握文档片段化与检索增强生成技术
背景简介
在处理大量文本数据时,我们常常需要将文档切分成更小的片段进行有效管理和快速检索。文档片段化与检索增强生成(RAG)技术是其中的关键步骤。本文将通过介绍文档片段化的原则、嵌入模型的选择以及如何构建一个简单的RAG应用程序,帮助读者深入了解这些先进技术和方法。
文档片段化的三个标准
文档片段化是将大型文档切分成适合搜索的小块的过程。在选择片段大小时,需要考虑以下三个标准:
- 标记数量 :确保标记的数量少于嵌入模型允许的最大标记数。例如,OpenAI嵌入模型的窗口为8,191个标记。
- 文本块大小 :理想情况下,确保文本块足够大,以包含一个且仅包含一个主要思想。
- 片段的适配性 :确保片段的大小适合放置在提示中。
片段化方法
实际中,有多种方法可以从文档中剪切出片段,包括使用移动窗口方法和在自然边界处切割文档。移动窗口方法通过选择窗口大小和步幅,捕获连续的文本片段。自然边界切割则是基于段落或章节,确保每个片段最多包含一个主题。
嵌入模型的选择
嵌入模型是专门通过对比预训练过程生成向量的模型,与大型语言模型(LLM)相比,其结构更小且成本更低。选择合适的嵌入模型需要考虑使用托管模型的便利性与自托管模型的性能和成本。此外,针对特定用例,如特定语言,可能需要寻找或训练更适合的模型。
构建简单的RAG应用程序
构建一个简单的RAG应用程序涉及几个关键步骤,包括索引和检索功能的实现。通过获取嵌入向量、创建索引、检索相关文本并将其嵌入到提示中,可以构建一个能够根据用户过去的行为和偏好生成个性化响应的应用程序。
神经检索与词汇检索
RAG应用程序可以基于神经检索或词汇检索构建。神经检索匹配基于思想而非单词,而词汇检索允许更多的控制相关性和调整。每种方法都有其优缺点,选择哪一种取决于具体的应用需求和上下文。
层次化摘要
层次化摘要是一种处理大量文本的策略,它通过分层的方式逐步总结,以适应上下文窗口的限制。层次化摘要可以应用于代码库、书籍或其他具有自然层次结构的文本。
总结与启发
通过本文的学习,我们可以了解到文档片段化和RAG技术的重要性,以及如何在实际应用中选择和使用嵌入模型。此外,我们还学到了层次化摘要的技巧,它可以在处理大量信息时提供有效的解决方案。
在实际应用中,选择合适的片段化方法和嵌入模型对于确保信息检索的准确性和效率至关重要。同时,了解神经检索与词汇检索的差异,可以帮助我们根据特定的业务需求和用户体验目标来优化我们的应用程序。层次化摘要的应用则展示了如何处理超出单一上下文窗口限制的大量文本数据。
在未来的发展中,我们可能看到更多的创新技术出现,以应对更复杂的检索和总结任务。同时,对于那些处理大量数据的开发者和数据科学家来说,了解并掌握这些技术将是必不可少的。