计算机装配调试员培训教材,电子计算机装配调试员理论培训教材.doc

一、综合题

计算机的系统资源划分为哪几类?包括哪些具体内容?

答:计算机系统资源分为硬件资源和软件资源两大类,

硬件资源包括运算器、控制器、存储器和输入设备、输出设备;(注意:运算器和控制器可以称为CPU也就是中央处理器)

软件资源也称信息资源,如:各种程序、数据和共享文件等。

什么是计算机网络?

答:简单说计算机网络就是通过某种方式互联起来的计算机的集合。互联的计算机之间可以交换信息和资源共享。

用专用的设备和软件将处于不同地点的独立的微机连接起来实现资源共享的通讯系统。

局域网主要有哪些拓扑结构?

网络中各个节点在物理上互相连接的形式叫做网络拓扑结构。局域网的拓扑结构主要有三种,即总线型、环形和星型拓扑结构。总线型拓扑结构是各个节点都连到一条公共的传输干线上,布线节省、方便,增加或减少一个节点也不影响其他节点的工作在但总线在某处发生故障会影响一片;

环型拓扑结构是把相邻节点依次连接,形成一个闭合的环,线缆短,还可以在不同的线段上使用不同的介质,但任何一个节点的故障都会是整个系统瘫痪;

星型拓扑结构是把各个节点各自用一条线缆连到一个"中心节点"上,除了这个中心节点以外,任何一个节点的故障都不会影响其他节点的工作,但需要的线缆长,成本高,而且对中心节点的可靠性要求高。

局域网基本系统采用的拓扑结构为星型拓扑。

4、试比较网络互连设备网桥、路由器、网络协议变换器在对应协议层功能方面的主要区别。

网桥用于数据层以上相同的网络,用于连接多个网段和多个服务器网际过滤。路由器用于网络层以上相同的网络,对转发路径进行选择。网络协议变换器用于各层均不相同的网络,对不同类型网络协议进行转换。

二、填空题

1.计算机网络技术其实是计算机技术?和?通信技术?的结合。

2.常见的网络操作系统有WINDOWS NT???????、UNIX??????和??? LINUX????3.计算机通信的质量有两个最主要的指标是误码率和数据传输速率。

4.在因特网上的计算机地址有IP地址和域名两种。

5.通过电话线或专用线等将不同的局域网连接在一起的网络被称作广域网。

6.调制过程将数字化的电子信号转换成模拟化的电子信号,再送上通信线路。

7.解调过程将收到的模拟化电子信号先还原成数字化的电子信号,再送入计算机中。

8.分组交换和电路交换相比,分组交换线路利用率高但实时性差。

9.以太网的拓扑结构是总线型。

10.因特网上提供的主要信息服务有电子邮件、WWW、文件传输?和远程登录四种。

11.双绞线看起来像是普通电话线,由对绞合线组成,它具有一定的传输频率干扰能力,线路简单,价格低廉,传送信息速度较低,通信距离为几百米。

12.计算机网络最本质的功能是实现资源共享。

13.一个计算机的网络组成包括通信子网和资源子网。

14.操作系统的存储管理是指对内存的管理。

15.常见的网络协议有TCP/IP、IPX/SPX和NetBEUI。

TCP/IP 指传输控制协议/网际协议 (Transmission Control Protocol / Internet Protocol)。

TCP/IP 定义了电子设备(比如计算机)如何连入因特网,以及数据如何在它们之间传输的标准。

IPX(Internet work Packet Exchange,互联网络数据包交换)是一个专用的协议簇

IPX协议簇包括如下主要协议:

●IPX:第三层协议,用来对通过互联网络的数据包进行路由选择和转发,它指定一个无连接的数据报,相当于TCP/IP协议簇中的IP协议;

●SPX:顺序包交换 (Sequenced Packet Exchange)协议。是IPX协议簇中的第四层的面向连接的协议,相当于TCP/IP协议簇中的TCP协议;

●NCP:NetWare核心协议(NetWare Core Protocol),提供从客户到服务器的连接和应用;

●SAP:服务通告协议 (Service Advertising Protocol),用来在IPX网络上通告网络服务;

●IPX RIP:Novell路由选择信息协议(Routing Information Protocol),完成路由器之间路由信息的交换并形成路由表。

英文原义:NetBIOS Extend User Interface

中文释义:NetBIOS用户扩展接口协议

NETBEUI协议在许多情形下很有用,是WINDOWS98之前的操作系统的缺省协议。总之NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。所以建议除了TCP/IP协议之外,局域网的计算机最好也安上NetBEUI协议。

NETBEUI缺乏路由和网络层寻址功能,既是其最大的

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值