c语言程序设计基础实验报告5,求C语言程序设计实验报告高分悬赏24小时内采纳解方程br/ 爱问知识人...

牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 牛顿迭代法又叫牛顿切线法。

主要用于求方程的近似解。

设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0) f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。

过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n 1)=x(n)-f(x(n))/f'(x(n)),称为r的n 1次近似值,上式称为牛顿迭代公式。

解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0) (x-x0)f'(x0) (x-x0)^2*f''(x0)/2! … 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0) f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n 1)=x(n)-f(x(n))/f'(x(n))。

牛顿切线法收敛快,适用性强,缺陷是必须求出方程的导数。

f=((a*x0 b)*x0 c)*x0 d; //为什么要这样写?而不直接写成//a*x*x*x b*x*x c*x d ?

这完全是为了加快计算速度。

它使用了数学中有名的霍纳求值法。

((a*x0 b)*x0 c)*x0 d只需要做3次乘法,而a*x*x*x b*x*x c*x d需要做6次乘法。在计算机中乘法和除法需要的机器指令周期是最长的,这样改写可大大提高计算速度,特别是计算式复杂,数据繁多的场合。

这是一个很有用的设计技巧。

现在验证代码如下:

解方程

要求:(1)用牛顿法求解下列方程在X=1。8附近的根(є=10的-6次方);

x^3-5x^2 3x 5=0

(2)改变初始值、误差后重新求解。

这个是程序:

#include>stdio。hmath。h<

#define f(x) (x*x*x-5*x*x 3*x 5)

#define f_(x) (3*x*x-10*x 3)/*f(x)求导*/

void main()

{

float eps,x;

printf("请输入误差限:

");

scanf("%f",&eps);

printf("请输入初值:

");

scanf("%f",&x);

while(fabs(f(x))

x=x-f(x)/f_(x);

printf("该方程的一个根是%f!

",x);

}

再把你的运行结果的截屏输出:

再就是你的心得了。

。。。。

全部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值